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Abstract— In this work, the bayesian framework is used for
the analysis of fMRI data. The novelty of the proposed approach
is the introduction of a spatio - temporal model used to estimate
the variance of the noise across the images and the voxels. The
proposed approach is based on a spatio - temporal version of
Generalized Linear Model (GLM). To estimate the regression
parameters of the GLM as well as the variance components
of the noise, the Variational Bayesian (VB) Methodology is
employed. The use of VB methodology results in an iterative
algorithm, where the estimation of the regression coefficients
and the estimation of variance components of the noise, across
images and across voxels, are alternated in an elegant and fully
automated way. The proposed approach is compared with the
Weighted Least Squares (WLS) approach and both methods
are evaluated on a real fMRI experiment.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) has been

established as a method for mapping sensory, motor and

cognitive functions to specific areas of the brain. It is based

on the blood-oxygen level dependent (BOLD) effect [1]. As

the conditions of the paradigm are alternated, the signal in

the activated voxels increases and decreases according to the

paradigm. The mapping of the voxel’s signal leads to the

production of a set of 3-D fMR images (fMRI dataset). fMRI

analysis aims to detect the activated regions of the brain.

In order to be achieved, fMRI must be processed in two

steps: preprocessing and statistical analysis [1]. The purpose

of the preprocessing is to remove the artefacts in the data,

and to condition (prepare) the data, in order to maximize the

sensitivity of the statistical analysis. Preprocessing includes:

slice timing, motion correction, spatial normalization and

spatial smoothing [1].

The statistical analysis aims to produce a statistical map

which indicates those points in the brain that have been

activated in response to the stimulus. Statistical analysis

is carried out in three steps: (a) modelling the fMRI data

(modelling the response to the stimulus and the random

error), (b) estimating the parameters of the model, and (c)

detecting the effect of interest (activation or no) using the

estimated parameters. The first two steps are referred as esti-

mation step and the third as detection step. For the estimation

of the parameters several methods have been proposed in

the literature that can be grouped in two broad categories:
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classical and Bayesian inference. The methods based on

classical inference include the least squares (LS) and the

maximum likelihood (ML) approach. Both approaches pro-

duce the same estimators under Gaussian errors. The main

difference between classical and Bayesian approach concerns

both the estimation and the detection step. More specifically,

methods based on classical inference do not use any prior

knowledge in the estimation procedure and the detection is

based on statistical parametric maps (SPMs) produced using

a statistical test (e.g. t-test). On the contrary, methods based

on Bayesian inference use prior knowledge of the parameters

and they detect effects of interest using posterior probability

maps (PPMs). For a comparison between the two general

detection approaches, in the context of fMRI data analysis,

the reader can look in [2], [3].

The bayesian framework [4], [5] has been used in many

works addressing several issues of fMRI data analysis. In

[6] it is used to estimate the regression parameters of the

GLM as well as to determine the activated regions of the

brain. For the estimation of the regression parameters an

uniformative prior was used. In [7] it is presented a bayesian

approach, based on the VB methodology, for the estimation

of the regression parameters of the GLM as well as for the

estimation of the noise. In [8], [9] the bayesian framework

is used to determine the design matrix in a flexible manner.

This is achieved using a particular prior, which is called

Automatic Relevance Determination (ARD) [10], [11]. Also,

the bayesian framework has been used in the analysis of

fMRI data using a spatio - temporal linear model [12],

[13]. These works are concentrated mostly to the spatial

distribution of the regression parameters rather to the noise.

As already mentioned, the bayesian framework can be

used in the estimation step as well as in the detection step.

In the proposed approach, the bayesian framework is used

in both steps. First, in the estimation to obtain the posterior

probability distribution of the parameters and then in the

detection step the posterior distribution is used to produce

the posterior probability maps (PPMs). The proposed work

is concentrated mainly in the modelling of the noise which

is observed in fMRI time series. The noise in a fMRI

time series mainly consists of two components, the drift,

which is a low frequency component, and a high frequency

component. Many approaches have been proposed to deal

with the drift component including temporal filtering [1],

modelling the drift as an AR(1) process [7] or using an

extended design matrix [8]. The extended design matrix

contains the BOLD response and the first components from

the Discrete Cosine Transform (DCT) [8] or polynomial
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terms [14]. The high frequency noise is assumed stationary

and is usually modelled as white gaussian noise. However,

in [15], [16] they have started to investigate the possibility

that this component might be non stationary. This non -

stationarity could have its origin in head movement as it

is reported in [15].

II. METHODOLOGY

In fMRI, the signal intensity of N voxels is measured at

time t = 1,2, · · · ,T . Each voxel n is assumed to be a linear

combination of effects (included in the design matrix) plus

a noise term:

yn = Xβn + en, (1)

where yn is a T x1 vector containing the fMRI time series,

en is a T x1 vector containing the noise, X is the T xp design

matrix and βn is a px1 vector of the regression parameters. In

general, in fMRI analysis each voxel time series is analyzed

independently from the others. We can collect all the voxels

in one matrix NxT . This approach will help to use a spatio

- temporal non - stationary model for the noise. Now the

fMRI dataset can be described as:

Y = XB+E, (2)

where Y = [y1, · · · ,yN ] is a T xN matrix containing all

the voxels, E = [e1, · · · ,eN ] is T xN matrix containing the

noise and B = [β1, · · · ,βN ] is a pxN matrix containing the

regression parameters of all voxels. The design matrix X is

the same for all voxels.

In our study we assume a spatio - temporal distribution for

the noise. The non stationarity of the noise is expressed by

two variance components, one variance component is respon-

sible for the variance of each voxel and the other component

is responsible for the variance of each image (slice of fMRI

volume image). This spatio - temporal distribution results in

a time varying variance model for the noise [15].

We assume a matrix Gaussian distribution for the noise

given as:

p(E) = N(0,Ω−1
,Σ−1). (3)

The matrix Ω is a T xT diagonal precision matrix and each

element in the main diagonal describes the precision (inverse

variance) in each image (slice of fMRI volume image).

The matrix Σ is a NxN diagonal precision matrix and each

diagonal element describes the precision in each voxel. The

distribution of the noise for the n-th voxel is a Guassian

distribution given as:

p(en) = N(0,(σnΩ)−1). (4)

Each voxel is independent from the others, so the likelihood

of the observations Y can be written as:

p(Y|X,B,Ω,Σ) =
N

∏
n=1

p(yn|X,βn,σn,Ω). (5)

In addition, the regression parameters are independent be-

tween the voxels. The probability distribution in that case is

given as:

p(B) =
N

∏
n=1

p(βn). (6)

Each regression parameter in a voxel is independent to the

others a priori. This assumption is included in the proposed

model through the prior distribution, which is called the ARD

prior [10] and is given as:

p(βn|an) =
P

∏
p=1

p(βnp|anp) =
P

∏
p=1

N(0,a−1
np ). (7)

The ARD prior is a hierarchical prior [5] and introduces into

our model the parameters anp. These parameters control the

prior distribution of the regression parameters of the linear

model. A gamma distribution [4] is used for each parameter

anp. So, the overall hyperprior is given as:

p(an) =
P

∏
p=1

Γ(anp;bnp,cnp). (8)

The gamma distribution is given as:

Γ(x;b,c) =
1

Γ(c)

xc−1

bc
exp{−

x

b
}, (9)

where b and c are the shape and scale parameters of the

gamma distribution.

Also, in the proposed model the precision component of

each image {ω1,ω2, · · · ,ωT} and the precision component of

each voxel {σ1,σ2, · · · ,σN} must be estimated. This means

that we must place a prior distribution over each precision

component. The prior distribution that is often used for a

precision component is the gamma distribution. So, the prior

over each precision component for each voxel is given as:

p(σn) = Γ(σn;bσn ,cσn),n = 1, · · · ,N, (10)

and the prior over each precision component for each image

is given as:

p(ωt) = Γ(ωt ;b
(ω)
t ,c

(ω)
t ), t = 1, · · · ,T. (11)

The overall prior according to our assumptions is given as:

p(B,{ωt}
T
t=1,{σn}

N
n=1,{an}

N
n=1) =

N

∏
n=1

p(βn|an)p(an) ·

N

∏
n=1

p(σn) ·
T

∏
t=1

p(ωt). (12)

The VB methodology is an approximate method for

bayesian inference [17]. In the bayesian inference we are in-

terested to obtain the posterior distribution of the parameters,

in our study the posterior distribution of the regression pa-

rameters, the parameters anp and the precision components.

However, the posterior distribution is not always tractable

and we need approximation techniques to obtain it. One such

technique is the VB methodology. The general idea on the

VB methodology is that the true posterior is difficult to be

obtained in close form, so it is approximated with another

distribution which produces a closed form solution. A usefull

approximation is to assume that a posteriori each parameter
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is independent of the others. In our study, the following

approximation is used:

p(B,{ωt}
T
t=1,{σn}

N
n=1,{an}

N
n=1|Y) ≈

N

∏
n=1

q(βn|an)q(an) ·

N

∏
n=1

q(σn) ·
T

∏
t=1

q(ωt). (13)

Applying the VB methodology we obtain the following

solutions:

q(βn) = N(β̂n,Cβn
),n = 1, · · · ,N, (14)

q(an) =
P

∏
p=1

Γ(anp;b
′

np,c
′

np),n = 1, · · · ,N, (15)

q(σn) = Γ(σn;b
′

σn
,c

′

σn
),n = 1, · · · ,N, (16)

q(ωt) = Γ(ωt ;b
′

ωt
,c

′

ωt
), t = 1, · · · ,T, (17)

where

Cβn
= (σ̂nXT Ω̂X+ Ân)

−1
, (18)

β̂n = (σ̂nXT Ω̂X+ Ân)
−1σ̂nXT Ω̂yn, (19)

1

b
′
np

=
1

2
(β̂ 2

np +Cβn
(p, p))+

1

bnp

, (20)

c
′

np =
1

2
+ cnp, (21)

ânp = bnpcnp, (22)

1

b
′
σn

=
1

2
(yn −Xβn)

T Ω̂(yn −Xβn)

+tr(XT Ω̂XCβn
)+

1

bσn

, (23)

c
′

σn
=

T

2
+ cσn , (24)

σ̂n = b
′

σn
c
′

σn
, (25)

1

b
′
ωn

=
1

2
(yT

t Σ̂yt −2yT
t Σ̂B̂xt +xT

t Gxt)+
1

bωn

, (26)

c
′

ωt
=

N

2
+ cωt , (27)

ω̂t = b
′

ωt
c
′

ωt
. (28)

In the above equations the matrices Ân,n = 1, · · · ,N are

pxp diagonal matrices having the parameters ân1, ân2, · · · , ânp

in the main diagonal. The matrix Σ̂ is a NxN diagonal

matrix containing in the main diagonal the mean of precision

components for each voxel, σ̂n,n = 1, ...,N, and the matrix

Ω̂ is a T xT diagonal matrix containing in the main diagonal

the mean of precision components for each image, ω̂t , t =
1, ...,T . The quantity G is calculated as follows:

G =
N

∑
n=1

σn(Cβn
+βnβ T

n ). (29)

The algorithm consists of the iterative application of equa-

tions (18)-(29). First, the equations (18)-(25) and (29) are

applied over all voxels to obtain the estimates of the re-

gression parameters and the precision component for each

voxel. Also, in this step the quantity G is calculated. Then,

the equations (26)-(28) are applied to estimate the precision

component of each image. In this step we use the estimated

regression parameters obtained in the previous step.

The above algorithm is applied until convergence of the

variational bound or until the convergence of the parameters.

The variational bound can be calculated from:

F(q,θ) = < log p(Y|X,B,{ωt}
T
t=1,{σn}

N
n=1 >q(θ)

−KL(q(θ)||p(θ)), (30)

where θ = {B,{ωt}
T
t=1,{σn}

N
n=1,{an}

N
n=1}. The Variational

bound is the difference between the expected likelihood and

the KL divergence between the approximate posterior and

the prior of parameters.

III. RESULTS

We compare the proposed approach with the Weighted

Least Squares (WLS) approach using real fMRI data. The

scaling matrix of the WLS approach is estimated using the

residuals of the LS approach [15]. The fMRI dataset have

been downloaded from http://www.fil.ion.ucl.ac.uk/spm/. A

healthy volunteer participated in the fMRI experiment, where

an auditory stimulus was used. More specifically, bi - syllabic

words presented binaurally at a rate of 60 words per minute.

During the experiment 96 3-D fMRI volume images were

acquired. The acquisition was made in blocks of 6 and lasted

6.05sec. The blocks alternated between two conditions: rest

and auditory stimulus. The size of the fMRI volume images

was 64x64x64 and the voxel size was 3mm x 3mm x 3mm.

The fMRI volume images were acquired on a 2T Siemens

Magnetom. Due to T1 effect the first two blocks were

discarded. After preprocessing, the size fMRI volume images

was 79x95x68 and the voxel size was 2mm x 2mm x 2mm.

The design matrix that was used in order to model

the fMRI experiment consisted of 84 rows (one for each

observation) and 5 columns. The first 3 columns contain the

regressors that model the drift term in the fMRI time series

using polynomial terms, and the other 2 columns contain

the regressors for the BOLD response and a constant mean

value, i.e. X = [t t2 t3 s 1], where t = [ 1
T
,

2
T
, · · · ,1], s is the

BOLD response of fMRI experiment and 1 is a T x1 column

vector of 1s to model the mean. For the initialization of

the algorithm we set the shape and scale of each gamma

distribution to 106 and 10−6, respectively.

In Fig. 1, the parameter of the linear model responsible for

the BOLD response is depicted using the proposed approach

and the WLS approach, as well as the histograms of these. It

is evident in this time serie the use of ARD prior. The ARD

prior is a sparse prior, and this sparseness can be observed in

the histogram of the regression parameter responsible for the

BOLD response. In Fig. 2 we depict the posterior probability

maps (PPMs) using the proposed approach and the WLS

approach. To produce these maps the contrast vector c =
[0 0 0 1 0] is used. Also, PPMs showing the presence of the

drift in a particular voxel are depicted. To produce these maps

the contrast vector c = [1 1 1 0 0] is used. The PPMs for the

drift show significant difference between the two approaches.

More specifically, the drift, using the proposed approach, is
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Fig. 1. Time series of the regression parameter for BOLD response using:
(a) the proposed approach, and (b) WLS approach, and its histogram using:
(c) the proposed approach, and (d) the WLS approach.

presented in areas of the occipital and temporal lobe while

the drift, using WLS, is presented in areas of the occipital

and frontal lobe. The presence of drift in a voxel means that

there is high correlation for the samples of this voxel. In

addition, in the proposed approach both brain hemispheres

show high correlation. On the contrary, the WLS approach

results in high correlation only in the right hemisphere.

In Fig. 3 the variance in each image, produced by the

proposed approach and by the residuals of the LS approach,

is depicted. It is obvious that there is high correlation

between the beginning and the ending of the stimulus and

the increase of variance in those images. For example we

can observe that the beginning of the stimulus at time t = 49

produces an increase of the variance at the particular image.

This finding justifies the assumption of non stationary noise.

In Fig. 4 the results of the clustering the PPMs is demon-

strated. The clustering was performed using the k-means

algorithm, and the number of clusters was set equal to two.

In these images the white regions show the activated areas of

the brain, while the gray regions show the non activated areas

of the brain. Both approaches present significant activation

on the auditory cortex. However, we observe that the WLS

presents extended activation in brain areas which are not

related to the experiment. Also, based on the clustering

procedure we show in Fig. 5, the averaged reconstructed

signal and the averaged acquired signal for both approaches

and both situations (activated, non - activated). We can

observe that the temporal courses of these signals show a

clear activation.

IV. CONCLUSIONS

We have presented a bayesian approach for the statistical

analysis of fMRI data. The proposed approach concentrates

mostly on modelling the non-stationary nature of the noise.

The non-stationarity of the noise is due to the head movement

or due to the reaction of the subject to a stimulus. The noise

is modeled using a spatio - temporal model. In this model

(a) (b)

(c) (d)

Fig. 2. PPMs of slice 28. (a) Activation of BOLD response using the
proposed approach, (b) Drift presence using the proposed approach, (c)
Activation of BOLD response using the WLS approach, (d) Drift presence
using the WLS approach.
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Fig. 3. Variance components for each image and the BOLD response.

(a) Clustering results using the
proposed approach

(b) Clustering results using the
WLS approach

Fig. 4. Grayscale images showing the clusters of PPMs. The white color
shows the activated areas and the gray color shows the non activated areas.
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(a) Averaged Reconstructed signal using the proposed
approach and the Averaged Acquired signal (activation
case).
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(b) Averaged Reconstructed signal using the proposed
approach and the Averaged Acquired signal (deactiva-
tion case).
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(c) Averaged Reconstructed signal using the WLS ap-
proach and the Averaged Acquired signal (activation
case).
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(d) Averaged Reconstructed signal using the WLS ap-
proach and the Averaged Acquired signal (deactivation
case).

Fig. 5. Averaged Reconstructed and Acquired signals for activation and non activation cases.

the noise is decomposed in two component, one component

is responsible for the variance of noise in each voxel and the

other component is responsible for the variance of noise in

each image (slice of fMRI volume). To analyze the fMRI data

a spatio - temporal version of GLM is used. In the regression

parameters we use as prior the ARD prior which tends to give

us sparse estimates. The assumption of sparseness is valid if

we expect during an experiment the activated areas of the

brain spread in small regions and not into the whole brain.
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