
  

  

Abstract— Magnetic nanoparticles play an important role in 
biomedical applications, such as MR imaging, drug delivery and 
hyperthermia. Nanoparticles made of high-moment materials 
like Fe-Co and Fe have become active in the field due to superior 
performance. Protected by a biocompatible shell (Au/Ag/Si/C), 
high-moment nanoparticles can retain their magnetic property 
over a long time and disperse well. By using a physical gas 
condensation technique, such high-moment nanoparticles and 
core-shell structured nanoparticles can be made and used for 
biomedicine. 

I. INTRODUCTION 
anoparticles have started to draw a great deal of attention 
in a wide range of biomedical area. Unique properties 
introduced or enhanced by the small size of 

nanoparticles are studied widely to achieve desirable optical, 
mechanical and magnetic capabilities[1]-[3]. The large 
surface to volume ratio gives favorable active interactions[4]. 
Magnetic nanoparticles have become one of the most 
appealing candidates for use in biomedical applications, 
anywhere interactions with magnetic fields present. These 
include MRI, drug delivery and magnetic fluid hyperthermia 
applications.  
From both magnetic and biomedical points of view, 
superparamagnetic nanoparticles have a number of favorable 
properties. They have a single magnetic domain structure and 
their magnetization fluctuates, assisted by thermal energy, 
giving rise to a negligible magnetic moment in the absence of 
any applied magnetic field. In the presence of a magnetic field, 
their magnetization can be described by the Langevin 
equation[5]. This intrinsic property makes them preferable 
because aggregation can be avoided without sacrificing 
magnetic signal [4]. 
Superparamagnetic iron oxide nanoparticles (SPIO), 
maghemite (γFe2O3) and magnetite (Fe3O4) are widely used 
due to their relatively easy synthesis process and established 
biocompatibility. They have been studied for several decades 
and have contributed to both diagnostic applications such as 
MR imaging and therapeutic applications such as 
hyperthermia[6][7]. However, the low saturation 
magnetization of iron oxide nanoparticles limits their 
applications, in some cases not even achieving the optimal 
level[8]. Increasing the magnetic moment of nanoparticles is 
the key for improving their application in biomedicine. Under 
size restrictions in a biological system, to achieve the possible 
highest magnetic moment of individual nanoparticle is 
desired for higher signal to noise ratio, lower dosage and 
higher efficiency. Although attempts to increase saturation 
magnetization have been made by doping iron oxides to form 
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spinel metal ferrites, magnetic property still needs to be 
enhanced for future applications [8].  
II. HIGH MAGNETIC MOMENT FE-CO AND FE NANOPARTICLES 
Our group first proposed the application of bio-compatible 
high-magnetic-moment nanoparticles for biomedicine 
application by preparing FeCo-Au(Ag) nanoparticles in gas 
phase in 2005 [9]. Bulk Fe-Co alloy has the highest saturation 
magnetization 240 emu/g at Fe:Co composition ratio of 
around 60:40, which makes it a promising material. 
Considering a single isotropic Fe0.6Co0.4, γFe2O3 and Fe3O4 
superparamagnetic nanoparticle with the same size (say 13nm 
in diameter), the corresponding hysteresis loops follow the 
Langevin equation[5]: 
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where m0 is magnetic moment of a single domain particle, H 
is applied field, k is Boltzman constant and T is temperature. 
Using bulk saturation magnetization of Fe0.6Co0.4, Fe3O4 and 
γFe2O3, M-H loops for a single superparamagnetic 
nanoparticle at room temperature are calculated assuming 
unoxidized Fe0.6Co0.4 and are shown in Fig1. At 20 Oe 
external field, the moment of an isotropic Fe0.6Co0.4 
nanoparticle is 2.4*10-15emu, which is 17 times larger than 
that of a Fe3O4 nanoparticle and 28 times than that of a γFe2O3 
nanoparticle. It is important to notice that in this ideal case a 
single Fe-Co nanoparticle response to the applied field much 
faster in the low field region, leading to a quick rise in 
magnetic moment value. This indicates that 
high-magnetic-moment Fe-Co nanoparticles can be used 
more efficiently as compared to same size iron oxide 
nanoparticles. Because oxidation usually takes place for 
unprotected Fe-Co nanoparticles, a comparison of oxidized 
Fe-Co nanoparticle with iron oxide nanoparticle is also made. 
Under consideration of the natural oxidation layer 
(approximately 1.5nm thick), the calculated hysteresis loop of 
one such Fe-Co nanoparticle is shown in Fig 1 (dashed line). 
The moment of Fe-Co nanoparticle is still 6 and 10 times 
larger than that of the same size Fe3O4 and γFe2O3 
nanoparticle. Therefore, even with a certain amount of 
oxidation, Fe-Co nanoparticles surpass iron oxide 
nanoparticles in terms of the critical magnetic property. As a 
matter of fact, natural oxidation layer leaves compatibility to 
biological environment and capability for functionalization. 
Iron can also be considered as another alternative choice of 
high-magnetic-moment material given its high saturation 
magnetization of 220 emu/g. Thus Fe-Co or Fe nanoparticles 
with their important characteristic are more promising for 
superior biomedical engineering systems.  
Exploration of synthesis of Fe-Co alloy or Fe nanoparticles 
with controllable size and shape has been done by different 
methods (See Table 2). A unique physical gas condensation 
method was developed by Wang’s group[29]. Fe-Co 
nanoparticles with narrow size distribution can be fabricated 
through control of thermal environment during fabrication 
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process[10][11]. Typical morphology and size distribution 
are shown in Fig 2(a)(b). Specific saturation magnetization of 
these unoxidized Fe-Co nanoparticles is determined to be 
around 226 emu/g, which is comparable to the bulk value[10].  

III. FECO AND FE BASED CORE-SHELL NANOPARTICLES  
Exposed Fe-Co and Fe easily oxidize and cannot be used for 
in vivo applications directly. Core-shell nanoparticles having 
an Fe-Co or Fe core and a biocompatible shell solves this 
problem of oxidation. Nobel metal, Silica and Carbon have 
been studied as prospective shell materials (See Table 2). 
Besides providing protection from oxidation, these shell 
materials have good chemical affinity for subsequent 
functionalization and may offer opportunities to approach 
multifunctional design.  

We successfully synthesized nanoparticles having Fe-Co 
core and Au, SiOx shell directly through a diffusion control 
based gas condensation method[14][17][30]. These 
nanoparticles are much more stable after exposure in air and 
simple chemistry can be applied to make them water soluble 
after modification of the shell material. Fig 2(c) shows the 
stable solution of Fe0.7Co0.3/Au core-shell nanoparticles 
dispersed in water. Experimental observation indicates that 
dispersion of these core-shell nanoparticles is better 
compared to Fe-Co nanoparticles with natural oxidation. 
Therefore, it can be concluded that Fe-Co or Fe core with an 
inorganic shell is a simple but effective design to obtain stable 
high-moment nanoparticles.  

IV. BIOMEDICAL APPLICATIONS OF HIGH MAGNETIC MOMENT 
NANOPARTICLES 

A. Magnetic Resonance Imaging Contrast Agents 
In magnetic resonance imaging, a net moment from a 
collection of protons in biological tissues is obtained under a 
large external field. Based on the Larmor procession of the 
moment subjected to a time varying magnetic field, relaxation 
of the moment is scanned after the application of an RF pulse 
which causes the moment to flip[31]. Relaxation time of 
moment along field direction and in-plane are called T1 and 
T2, respectively, and reduction of either one of them can 
enhance the contrast. Superparamagnetic nanoparticles are 
commonly used as T2 MRI contrast agents[32]. T2 relaxation 
depends on the loss of phase coherence of the processing 
protons. An inhomogeneous local magnetic field 
environment can accelerate the phase coherence loss. In these 
circumstances, relaxation time T2 is replaced by T2* which 
includes the contribution from the inhomogeneity of the local 
field. Thus the decaying stray field from superparamagnetic 
nanoparticles shortens the relaxation time by introducing a 
local field gradient. Stray field of a nanoparticle is expressed 
as[33]: 
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where mj and mi are moment of the ith and jth atom, n is the 
field direction, and rij is the distance between ith and jth atom. 
A simulated stray field distribution of a Fe-Co nanoparticle 

using FEMLAB is shown in Fig 3(a). Decrease of stray field 
strength in the direction away from the nanoparticle can be 
observed. For high magnetic moment nanoparticles, the stray 
field decays faster. In this way, they provide better contrast by 
accelerating the relaxation more effectively.  
The effectiveness of Fe-Co nanoparticles as MRI contrast 
agents and cell labels was demonstrated by tracking cells 
labeled with Fe-Co nanoparticles. High resolution MR 
imaging was shown in Fig 3(b)(top) while the unlabeled 
control sample (bottom) didn’t show any contrast.  

B. Magnetic Hyperthermia 
Magnetic hyperthermia is a therapy that makes use of heat 
generated by nanoparticles under an AC magnetic field to kill 
malignant tumors[34]. Superparamagnetic nanoparticles 
release heat through Néel relaxation and Brownian 
relaxation[35]. The former one is due to magnetization 
relaxation with respect to crystal axis and the latter one is due 
to frictional rotation of the whole particle. The heat, or 
specific power loss is expressed as[36]:  
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where, μ0 is the free space permeability, H is the AC field 
amplitude, ω is the field frequency and τ is the effective 
relaxation time. χ0 is the susceptibility from Langevin 
function[36], 
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where, s is described in (1), V’ is volume fraction of 
nanoparticles, Ms is the saturation magnetization of the 
ferrofluid and H is the applied field. According to the 
equation (4), nanoparticles with high magnetic moment such 
as Fe-Co show higher susceptibility χ0 at the same volume 
concentration and hence more heat will be generated as 
compared to those having lower magnetic moment. Or 
equivalently, sufficient heat can be generated by a smaller 
amount of high-moment nanoparticles. This reduced dosage 
meets the criteria of in vivo application.  
In Fig 3(c)[37], our system set-up for magnetic hyperthermia 
experiments is schematically illustrated. The sample is 
located in a copper coil connected to AC power supply. 
Temperature is measured by an optical fiber probe. Fig 3(d) is 
a plot of temperature change of water solution with a 
concentration of 8mg/ml Fe0.7Co0.3 nanoparticles versus time. 
The solution was placed in an AC magnetic field having 
frequencies at 191 kHz and 312 kHz and a peak magnetic 
field strength of 6 kA/m. These results indicate the capability 
of Fe-Co nanoparticles for use in magnetic hyperthermia.  
To realize local heating in magnetic hyperthermia, 
positioning nanoparticles in a specific location is another 
challenge that requires proper design. Controlling the 
position by magnetic field is a promising way. The force felt 
by a nanoparticle is given by [31]  

( )F m B= •∇                          (5) 
where B is the applied field. The force is thus proportional to 
the moment of the nanoparticle as well as the gradient of the 
field. A high-moment nanoparticle can reach farther targeting 
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location as the field decays during penetration through the 
tissue.  

C. Biomarkers for Magnetic Sensor Detection 
Detection of a magnetic biomarker relies on stray field, 
emanating from the nanoparticle bonded to the sensor surface, 
which will cause a resistance change of GMR/MTJ based 
sensor. According to the equation (2), stray field strength is 
proportional to the magnetic moment of individual 
nanoparticle. A high moment nanoparticle will give a large 
value of signal to noise ratio. Recently we achieved 
zeptomole sensitivity detection of strepavidin labeled by 
cubic Fe-Co nanoparticles using GMR sensor[38]. This 
demonstration shows the potential of magnetic sensor 
detection scheme for future personalized health care device. 

V. SUMMARY 
High-magnetic-moment nanoparticles (Fe-Co and Fe) point 
out one direction to go in future biomedicine for improvement 
of nanoparticles’ performance and efficiency. The intrinsic 
magnetic property of the material leads to high moment of 
individual nanoparticle in low magnetic field regime. 
Core-shell nanoparticles consisting of high magnetic moment 
core and chemically stable, biocompatible shell materials 
provide more opportunities to tailor property of 
nanoparticles. Improvements in MRI contrast agents, 
magnetic hyperthermia heat sources, and biomarker have 
been obtained using high- magnetic-moment nanoparticles.  
 

 
Fig.1 Calculated single particle M-H loops of unoxidized 
Fe-Co, Fe3O4, γFe2O3 and FeCo-FeCoO  
 
  TABLE1 CALCULATED MAGNETIZATION VALUES 

 
        TABLE2  HIGH -MOMENT NANOPARTICLES 

 

 
Fig. 2 (a) Bright field TEM image of Fe-Co nanoparticles (b) 
Size distribution (c) Water solution of Fe0.7Co0.3/Au 
core-shell nanoparticles  
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Fig. 3 (a) Simulated stray field distribution of one Fe0.7Co0.3 
nanoparticle viewed from the top of the particle. Qualitative 
stray field strength is indicated by the color bar. (b)MR image 
of cells labeled Fe-Co nanoparticles (top) and unlabeled cells 
(bottom). Sample was prepared by Prof. Arkadiusz Dudek 
and MR image was collected by Prof. Patrick Bolan. (c) 
Schematic illustration of magnetic hyperthermia 
experimental set-up (d) Temperature rise versus time of 
8mg/ml Fe0.7Co0.3 nanoparticle water solution under external 
AC field of 6kA/m peak field strength.  
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