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Abstract— Functional descriptions of the heart, especially
the left ventricle, are often based on the measured variables
pressure and ventricular outflow, embodied as a time-varying
elastance. The fundamental difficulty of describing the me-
chanical properties of the heart with a time-varying elastance
function that is set a priori is described. As an alternative, a new
functional model of the heart is presented, which characterizes
the ventricle’s contractile state with parameters, rather than
variables. Each chamber is treated as a pressure generator that
is time and volume dependent. The heart’s complex dynamics
develop from a single equation based on the formation and
relaxation of crossbridge bonds. This equation permits the
calculation of ventricular elastance via Ev = ∂pv/∂Vv . This
heart model is defined independently from load properties, and
ventricular elastance is dynamic and reflects changing numbers
of crossbridge bonds. In this paper, the functionality of this
new heart model is presented via computed work loops that
demonstrate the Frank-Starling mechanism and the effects of
preload, the effects of afterload, inotropic changes, and varied
heart rate, as well as the interdependence of these effects.
Results suggest the origin of the equivalent of Hill’s force-
velocity relation in the ventricle.

I. INTRODUCTION

FUNCTIONAL description of the heart via models is

important for study of the heart’s pumping mechanism,

for understanding of normal and disease conditions, and to

serve as a building block in larger physiological systems.

Models of the heart as a pump originally reflected prevail-

ing physiological concepts of heart function. Accordingly,

Starling’s law became the basis of early models of this fluid

pump, e.g., the design of hydraulic pumps [1] representing

the two sides of the heart in a closed-loop cardiovascular

system model. Guyton [2] used a graphical technique to

define an operating point for a variety of conditions. Early

mathematical models expressed the Starling mechanism in

equation form [3]. The strongly pulsatile nature of the heart

beat was ignored in these models. Pulsatile phenomena

were included by Warner [4] in his model of the closed

circulatory system in which viscous, inertial and compliant

properties play a role. The two ventricles were modeled

by two time-varying compliances (inverse elastances) that

changed their values stepwise. Subsequent work replaced this

discontinuous description by continuous ones, e.g.[5].

Current mechanical descriptions of the heart as a pump

typically depend on the time-varying elastance [6]. Ven-

tricular elastance Ev is defined as the time varying ratio
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of instantaneous ventricular pressure pv and volume Vv as

Ev(t) = pv/(Vv − Vd). Ventricular elastance defined in

this way measures both ventricular and arterial properties.

Consequently, an elastance curve measured for an ejecting

ventricle predicts isovolumic pressure curves very different

from those measured [7].

Another approach is construction of the ventricle on the

basis of individual myocardial fiber properties in conjunction

with their geometric arrangement, e.g. [8]. The inherent com-

plexity of the heart’s geometry and muscle fiber arrangement

leads to complex models. The nonlinear, time-varying, active

properties of heart muscle lead to challenges in applying

finite-element modeling techniques to the heart. This paper

tests the ability of a simple functional model of the heart as a

pump to demonstrate fundamental cardiovascular dynamics.

II. METHODS

Ventricular pressure pv is described as a function of time

t and ventricular volume Vv according to [10]:

pv(t, Vv) = a(Vv − b)2 + (c Vv − d)f(t) (1)

Generated pressure results from the sum of passive (diastolic)

and active (systolic) components, shown on the left and right

sides of the plus sign in eq. 1, respectively. Considering

the passive term first, measurement of diastolic isovolumic

pressure on isolated dog hearts for different volumes shows

that a and b are constants for a given ventricle [9]. b
corresponds to the diastolic volume at zero pressure. a
is a measure of diastolic (passive) ventricular elastance.

The second, systolic term was similarly determined from

measured peak isovolumic pressure at different volumes,

where c and d are directly related to volume dependent

and volume independent components of developed pressure,

respectively. The function f(t) describes the time course

of active force generation, a product of contraction and

relaxation exponentials related to myofilament crossbridge

bond formation and detachment, respectively:

f(t) =
(1 − e−( t

τc
)α

)e−(
t−tb

τr
)α

(1 − e−(
tp
τc

)α

)e−(
tp−tb

τr
)α

, tb < t < 1 (2)

τc and τr are time constants characterizing the contraction

(pressure increase) and relaxation (pressure decrease) pro-

cesses, respectively, while α is a measure of the overall rate

of onset of these processes. The combination of diastolic

and systolic terms yields an analytical function describing

ventricular pressure as a function of both time and ventricular
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Systemic Circulation 

LA  = Left Atriu m 
R LA  = Left Atrial Resistance 
MV = Mitral Valve 
LV = Left Ventricle 
AV = Aortic Valve 
Z SO  = Systemic Characteristic Impedance 
C SA  = Systemic Arterial Compliance 
R SA  = Systemic Peripheral Resistance 
C SV  = Systemic Venous Compliance 
R SV  = Systemic Venous Resistance 

Pulmonary Circulation 

RA  = Right Atriu m 
R RA  = Right Atrial Resistance 
TV = Tricuspid Valve 
RV = Right Ventricl e 
PV = Pulmonic Valve 
Z PO  = Pulmonic Characteristic Impedance 
C PA  = Pulmonic Arterial Compliance 
R PA  = Pulmonic Peripheral Resistance 
C PV  = Pulmonic Venous Compliance 
R PV  = Pulmonic Venous Resistance 

Fig. 1. Human circulatory system model.

volume. tb is a time constant derived from tp, τc, τr and α:
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All model constants are determined from experimental data

[9], [7]. For ten dogs, average error between experimental

data points and analytical curves was <=1% [10].

This pressure model was adapted to describe each of

the four human heart chambers, as part of the complete

circulatory system model depicted in fig. 1. Model constants

in eq. 1 are listed in Table I for each heart chamber. A

pressure-voltage analogy was employed, with flow depicted

by current and volume by charge. The circulation model

elements, from left to right in fig. 1, begin with the left

atrium (LA), described by eq. 1. This pressure source ejects

into the left ventricle (LV) via the mitral valve (MV),

depicted as a diode, with finite flow resistance RLA. The

left ventricle is also described by eq. 1. Ejected blood

then flows through the aortic valve (AV) into the systemic

arterial tree, consisting of systemic characteristic impedance

of the aorta (ZSO), systemic arterial compliance (CSA) and

systemic peripheral resistance (RSA). The systemic venous

compliance and venous flow resistance are next described

by CSV and RSV , respectively. The pulmonary circulation is

described similarly. The right atrium (RA) and right ventricle

(RV) are each described as time- and volume-dependent

pressure sources (eq. 1). The right atrium fills the right

ventricle via the tricuspid valve (TV) with flow resistance

RRA. Blood is ejected via the pulmonic valve (PV) into the

pulmonary arterial circulation, another 3-element modified

windkessel, composed of ZPO, CPA and RPA, and finally

through the pulmonary venous vessels, described by CPV

and RPV .

Circulatory system parameter values, chosen guided by

literature data, e.g. [11], are listed in Table II. Values were

chosen to yield computed volumes, flows and pressures con-

sistent with typical human values. Network theory techniques

were used to write pressure and flow expressions at each

circuit node (fig. 1), and flow equations were numerically

integrated, yielding volumes. Each circuit node requires three

equations to solve for the three unknowns pressure, volume

and flow. Final computed nodal volumes at the end of one

beat are used as the initial volumes for subsequent beats,

TABLE I

CONSTANTS FOR DESCRIPTION OF EACH HEART CHAMBER (EQ. 1).

Constant L Atr. L Vent. R Atr. R Vent.

a [mmHg/ml2] 0.005 0.0007 0.005 0.0007
b [ml] 5 20 5 10
c [mmHg/ml] 1 3.5 1 1.5
d [mmHg] 15 80 15 50
τc [s] 0.06 0.264 0.06 0.264
tp [s] 0.1 0.371 0.1 0.371
τr [s] 0.08 0.299 0.08 0.299
α 2.88 2.88 2.88 2.88

TABLE II

MODEL CIRCULATION ELEMENTS AND THEIR CONTROL VALUES.

Model Element Symbol Control Value

Systemic Circulation
Left atrial resistance RLA 0.007 mmHg-s/ml
Systemic characteristic impedance ZSO 0.1 mmHg-s/ml
Systemic arterial compliance CSA 1 ml/mmHg
Systemic peripheral resistance RSA 1.5 mmHg-s/ml
Systemic venous compliance CSV 190 ml/mmHg
Systemic venous resistance RSV 0.1 mmHg-s/ml

Pulmonary Circulation
Right atrial resistance RRA 0.001 mmHg-s/ml
Pulmonic characteristic impedance ZPO 0.08 mmHg-s/ml
Pulmonic arterial compliance CPA 4 ml/mmHg
Pulmonic peripheral resistance RPA 0.08 mmHg-s/ml
Pulmonic venous compliance CPV 90 ml/mmHg
Pulmonic venous resistance RPV 0.1 mmHg-s/ml

computing until left and right side ventricular stroke volumes

equilibrate in steady-state. Ventricular elastance, Ev , defined

as ∂pv/∂Vv , may be computed as

Ev(t, Vv) = 2a(Vv − b) + cf(t) (4)

III. RESULTS

The isolated left ventricle model (eq. 1) was filled with

a constant pressure source and coupled to a three-element

systemic arterial load (ZSO, CSA, and RSA in fig. 1). The

ventricle produces pressure-volume work loops as shown in

fig. 2. As end-diastolic volume is increased by changing

filling pressure, stroke volume SV increases as expected,

since the model has the force-length relation built in (cV v−d
of eq. 1). Work loops shift to the right via two interdependent

effects: increased preload leads to an increase in stroke

volume (Frank-Starling), and the end-systolic volume shifts

to the right since the increased stroke volume leads to

an increase in cardiac output and arterial pressure, thereby

increasing afterload. This increased afterload partially offsets

the increased stroke volume due to increased end-diastolic

volume. The increased afterload reduces the constituent heart

muscles’ velocity of shortening and therefore the heart’s

ejection velocity. Hence, the ventricle model itself has mus-

cle’s force-velocity relation [12] built in without separate

assumptions of a hyperbolic curve.

Afterload was changed by varying arterial peripheral re-

sistance RSA for the isolated ventricle filled from a pressure

source, producing work loops as shown in fig. 3. Increased

afterload reduces stroke volume since the increased arterial
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Fig. 2. Pressure-volume work loops computed for the isolated left ventricle
model filled by a constant pressure source. Preload was increased by 12.5
and 25% by increasing filling pressure.

pressure reduces the velocity of muscle shortening and,

consequently, the velocity of blood ejection. The reduced

stroke volume at the same end-diastolic volume reduces the

ejection fraction.
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Fig. 3. Work loops computed for the isolated left ventricle model filled with
a constant pressure source. Afterload was increased by increasing peripheral
resistance RSA by a factor of 1.5 and 2.

The interdependence of preload and afterload is evident in

the complete cardiovascular system model (fig. 1). Afterload

was changed by altering peripheral resistance in both the

systemic and pulmonary circulations. As for the natural

system, the Starling mechanism partially compensates for

the reduction in stroke volume (fig. 4). Starling’s law is also

evident in the complete CV system model by changing the

total blood volume ±10% as seen in fig. 5.

Inotropic changes may be studied by changing the c coeffi-

cient of eq. 1. Each of the four heart chambers were subjected

to 33% increased and decreased contractility, depicted in the

work loops of fig. 6. For positive inotropic changes, increased

pressure generation is due to increased numbers of bonds

within the cardiac muscle. This serves to shift the muscle to a

new force-velocity curve, so that a given muscle force yields

higher velocity of muscle shortening. Subsequently, the heart
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Fig. 4. Work loops computed for the full cardiovascular system. Afterload
was increased on both the left and right circulations by increasing both
arterial and pulmonary peripheral resistance by a factor of 1.5 and 2.

40 60 80 100 120 140
0

50

100

150

200

Left Ventricular Volume V
v
  [ml]

L
e
ft
 V

e
n
tr

ic
u
la

r 
P

re
ss

u
re

 p
v  

[m
m

H
g
]

-10%

+10%

Fig. 5. Work loops computed for the full cardiovascular system. Total
blood volume was increased and decreased 10% from the control 5 liters.

chamber’s ejection velocity increases, thereby increasing

stroke volume. Increased contractility ejects more volume,

so a small decrease in EDV leads to a somewhat smaller SV

via Starling’s law, thereby slightly lowering the increase in

stroke volume.

Heart rate can be varied in the model by simple time

scaling of the activation function f(t) (not shown). Ven-

tricular elastance was also computed via eq. 3 for all of

the above situations (not shown). Computed elastance was

found to be strongly sensitive to the heart’s contractile state,

but insensitive to preload or afterload.

IV. DISCUSSION

Using a time-varying elastance defined as the ratio of

instantaneous pressure and volume is problematic since elas-

tance is predetermined. In the ventricle, or its constituent

heart muscle, the contraction process is dynamic. For ex-

ample, the force-length relation is believed to arise from

additional crossbridge bonds formed at longer muscle lengths

[13]. Similarly, increased calcium ion concentration shifts

muscle’s force-velocity relation to a different curve. Both

processes should affect muscle or ventricle elastance.
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Fig. 6. Work loops computed for the full c.v. system (fig. 1). Varied
contractile state via inotropic measures was implemented by increasing and
decreasing the model parameter c for all four heart chambers by 33%.

Description of the heart as an isovolumic pressure source

seems destined to limit this model to isovolumic behavior.

The added feature of continuous volume dependence greatly

expands this analytical description to include all of the main

features of ventricular pumping.

Equation 1 includes Otto Frank’s pressure-volume rela-

tion directly, since the model was derived from isovolumic

pressure curves at different end-diastolic volumes. Starling’s

law arises from the same force-length relation. For the

isolated ventricle, we observe moderation of increased stroke

volume with increased filling due to the increase in afterload

produced by the more strongly ejecting ventricle.

Heart models must show inverse sensitivity to afterload,

and since this is more a vascular than heart property, most

models do. However, the interdependence of increased after-

load yielding smaller stroke volume must be moderated by

the resulting increase in end diastolic volume via Starling’s

law. Using eq. 1 to describe each of the heart’s chambers

as part of a lumped model of the closed cardiovascular

system demonstrates the model’s ability to show Starling’s

law accompanying increased afterload, and for changes in

total blood volume.

The underlying cause of increased afterload leading to

decreased stroke volume is the inverse force-velocity relation

of the constituent heart muscle. During higher afterload con-

ditions, whether due to changes in the peripheral resistance

of the blood vessels or increased contractility of the heart,

the resulting increased pressure requires heart muscle to

operate at a lower velocity of shortening. This lower velocity

reduces ejection velocity, and hence amount of blood ejected.

The proposed model has the force-velocity relation built in

without assuming a hyperbolic force-velocity curve.

A functional heart model must allow for changes in

heart rate. Heart rate variability is included in the proposed

model by scaling the contraction activation function f(t),
whose exponential functions describe bond attachment and

detachment. The approach presented in this paper includes

all of the main features of ventricular pumping with a single

equation and set of model constants. At the same time, it

is as dynamic as the natural system and does not require

adjustment of an adopted elastance curve or force-velocity

curve for different loading conditions.
Time-varying elastance models of the heart are unable to

isolate ventricular properties from circulatory properties [7].

The generalized pressure description (eq. 1) was shown to

well describe the isolated canine left ventricle independent

of vascular effects. This paper demonstrates the general-

ized pressure model’s ability to functionally describe each

chamber of the human heart. This model embodies a wide

range of phenomena using a small number of equations

and assumptions. With additional experimental data, it may

be developed into a research model for predicting new

physiological mechanisms, and to stimulate new questions

and experiments, for example, the ejection effect [14]. The

latter is the experimental observation of initially lower and

then higher than expected pressure during blood ejection [9].

The ejection effect is likely directly related to crossbridge

bond formation and should directly affect muscle and heart

elastance. Insight gained may lead to better understanding

of altered heart function and, ultimately, facilitate clinical

diagnosis of cardiovascular disease.
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