
 
 

 

  

 
Abstract— An active paradigm was employed to produce 

reliable and prominent target response in an auditory brain 
computer interface (BCI), in which subject’s voluntary 
recognition of the property of a target human voice enhances 
the discriminability between target and non-target EEG 
response. Furthermore, to adaptively decide the optimal 
number of trials being averaged for SVM classification, a 
statistical approach was proposed to convert each sample’s 
margin in support vector space into probabilities of each voice 
choice being the target. In a testing of 8 subjects’ EEG data 
from the active auditory BCI experiment, the proposed adaptive 
approach needs only about 4-6 trials to reach the equivalent 
accuracy of 15-trial averaging. The improved information 
transfer rate suggests the advantage of adaptive strategy in an 
active auditory BCI. 
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I. INTRODUCTION 
ecause of reliable and easy detection of visual responses 
over the scalp, most brain computer interfaces (BCI) 

employ visual modality for presenting the stimulus[1][2]. But 
for a totally “locked-in” patient who has compromised vision 
or loses the control of eye movement, a BCI paradigm using 
auditory stimulus is more preferable, since hearing usually 
preserved in severely paralyzed patients, even in amyotrophic 
lateral sclerosis (ALS)[5]. Using auditory stimulus as a 
substitute for visual feedback, the subject can regulate either 
the amplitude of slow cortical potential [3] or sensorimotor 
rhythm [4] almost equally well for BCI purposes. But in these 
conditions, the auditory stream does not carry any 
information the subject wants to communicate. Alternatively, 
the BCI choices can be embedded in an auditory stimulus 
sequence. Sellers et al. tested an auditory BCI with an oddball 
paradigm containing four words. The subjects were required 
to attend to the target word and P300 was elicited [5], making 
it possible for target and non-target discrimination. Recently, 
we proposed a more active paradigm, with a subject’s 
voluntary recognition of the property of a target human voice, 
which enhances the discriminability between brain responses 
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to target and non-target voices [6]. The N2 and late positive 
component (LPC) in event related potentials (ERP) were used 
as features for identifying the target among multiple voice 
choices. In current study, this active auditory BCI paradigm 
was adopted, but with a new approach of adaptive 
classification.  

For BCIs using event-related potentials, coherent 
averaging is an essential step to enhance the signal to noise 
ratio (SNR). More averaged trials increase the accuracy of 
target detection, with a cost of more time for selecting a target 
and thus lowering the speed of BCI communication. Thus, 
there is a tradeoff between accuracy and speed in deciding the 
number of trials being averaged.  A common approach is to 
fix the number of trials empirically. In auditory BCI, more 
averaged trials are needed because of poor SNR of auditory 
EEG response. And usually, presenting an auditory stimulus 
needs more time than visual modality. For these reasons, 
deciding an optimal number of trials being averaged is even 
crucial in auditory BCI. In this paper, a statistical approach is 
proposed to adaptively decide the number of trials being 
averaged for a decision. The value of the discriminant 
function of each sample in support vector machine (SVM) 
classifier was converted into probabilities of each BCI choice 
being the target (P*). If the highest probability P* among all 
BCI choices reached a pre-defined threshold estimated from 
training accuracy, the adaptive algorithm terminated the 
averaging and selected the target with highest probability P*. 
In an online experiment of 8 subjects using the 
aforementioned active auditory BCI paradigm, the proposed 
adaptive method needs only about 4-6 trials to reach the 
equivalent accuracy of 15-trial averaging, demonstrating the 
advantage of this adaptive approach.  

II. METHODS 

A. Subjects and experimental setup 
Eight subjects (six males and two females) with normal 

hearing were included in this study. They all gave informed 
consent prior to the experiments. All auditory stimuli were 
presented to subjects by using insert earphones (Etymotic 
ER2, Illinois, USA). The EEG was recorded using a standard 
EEG cap (Electro-Cap, Neuroscan, USA) with 30 surface 
electrodes, based on the International 10-20 system, 
referenced to linked-mastoids. The signals were digitized at a 
rate of 1000Hz, band-pass filtered at 0.05-200Hz (SynAmps2, 
Neuroscan, USA). All electrode impedances were kept below 
5 kΩ during data recording. 
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   Eight digits spoken in Chinese were presented randomly 
to form a stimulus sequence (single trial). Each digit was 
200ms in duration and adjusted to have the same intensity. 
The stimulus onset asynchrony (SOA) was randomized from 
250 to 450ms. The laterality of the voice was totally random. 
The digit voices were presented either to the subject’s right 
ear or to the left. One block consisted of 15 trials. Before each 
block, the subject was told which digit was the ‘target’. 
Subjects’ task was to identify the target digits in the sequence 
and discriminate their laterality (silently saying ‘left’ or 
‘right’) while ignoring non-target voices. For each subject, a 
total of 8 blocks (120 trials) of stimulus were presented and 
corresponding EEG data were registered. 

B. Preprocessing and training the classifier 
Based on the spatial pattern of ERP components shown in 

Figure 1 (See Result section for details), P3 electrode over 
parietal cortex was chosen as the only one signal channel for 
the following classification. 800ms segments of EEG data 
after each stimulus onset were extracted and down-sampled 
to 20Hz, resulting in a feature vector with 17 sample points.  

Support vector machine (SVM) is a powerful and robust 
method for pattern classification, showing superior 
performance the detection of event-related potentials in 
BCI[2,14]. Hence, SVM was adopted as the classification 
method for our active auditory system. Before training the 
classifier, all features were normalized to [-1, 1] and the class 
labels were set as { }1,1ky ∈ −  representing the class of 

non-target and target respectively.  

To improve the SNR of the features, we averaged feature 
vectors of three consecutive single trials to get one training 
sample. Since there are 15 trials in one block, 13 training 
samples were obtained by using one-step sliding window. 
Note that there are seven non-target voices and only one 
target voice, which leads to uneven training dataset sizes of 
these two classes. If we randomly choose the same number of 
non-target samples as the target samples, the variation of the 
classifier is very high. However, if non-target samples are 
much larger than target ones, the generalization ability of the 
classifier will suffer. Therefore, the non-target to target ratio 
(NTR) of training samples should be appropriately chosen. 
Empirically, NTR=3 is a tradeoff between classifier stability 
and generalization ability. To obtain an optimal performance, 
the parameters of SVM classifier were determined by 5-fold 
cross-validation.  

C. Posterior probability calculation 
Usually, the SVM classifier predicts only class label and 

returns a value of the discriminant function that represents the 
distance (margin) from the sample to the hyper-plane in the 
support vector space. However, the posterior probability of 
the sample is even more informative for classification. Platt et 
al. proposed a method to map the SVM outputs into posterior 
probabilities [10]. By using that probability mapping 

algorithm, after n  stimulus trials, the probabilities 

( ), ,1 |k n k nP y = x  of feature vector ,k nx  can be obtained. 

Then, the probability of voice k  being the target is given by 

( ) ( ) ( ), , , ,
,

1 | 1 |n k n k n i n i n
i i k

P k P y P y
≠

= = ⋅ = −∏x x     (1) 

It is very important to note that the subject focuses on only 
one target voice in each block, which adds a special condition 
to the above probability. Suppose that the target is detected 
after n trials (condition nΦ  ), the probability of voice k being 
the target after n trials is the conditional probability 

( ) ( ) ( )
( )

( )
( )

,
| n n n

n n n
n n

P k P k
P k P k

P P
∗ Φ

= Φ = =
Φ Φ
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Note that condition nΦ  contains all possible choices of voice 
k, so we have 

( ) ( )n n
k

P P kΦ =∑          (3) 

After n  trials of stimuli, the target voice was chosen as nr  
according to 

( )arg maxn n
k

r P k∗=        (4) 

D. Adaptive determination of the trial number 
In the case of fixed number averaging, the EEG response to 

target voice could have already reached a discriminable level 
before all trials were presented. To speed up the decision, a 
reasonable criterion should be set to terminate the stimulus 
repeating. In an online system, the probability ( )nP k∗  shown 

in equation (2) reflects the current performance of the subject 
after n trials averaging and can be used as the termination 
criterion. Here, we considered the output target voice nr  after 
n  trials as the final output of the block when ( )nP r∗  is 

higher than a predefined threshold. However, due to the 
variation of different subjects’ performance, the threshold 
must be related to individual’s performance. We used the 
cross-validation accuracy (denoted as Ac) from SVM training 
as the reference of each subject’s performance, which is 
usually higher than that can be achieved in the online testing 
phase. A threshold θ  was then set as a proportion of this 
cross-validation accuracy: 

cA⋅= λθ                                 (5) 

The software for the online system was developed on 
Visual C++ platform while the signal processing algorithm 
was implemented using MATLAB engine. LibSVM toolbox 
was employed for SVM model training [11]. Offline analysis 
was conducted in MATLAB with EEGLAB toolbox [7]. 
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III. RESULTS 

A. Auditory response: ERP spatio-temporal pattern  
 Figure 1 shows all subjects’ ground averaged event related 

potentials (ERP) and its amplitude topographic maps. The 
ERP elicited by target stimulus reveals a major negative 
deflection N2 in the time range of 100-300ms, with a central 
maximum topography, which may represent the auditory 
processing negativity modulated by endogenous attention 
[15]. A late sustained positivity across 400-700ms, could also 
be identified in the target ERP, which resembles the late 
positive component (LPC), with a parietal distribution. The 
LPC component reflects the subjects’ voluntary response to 
stimulus property (‘left’ or ‘right’ laterality), which is 
consistent with previous findings [8].  Considering the spatial 
distribution of both N2 and LPC, the parietal electrode P3 
was selected as the only electrode for  further classification. 
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Fig. 1.  The temporo-spatial pattern of ERPs in the active auditory BCI: (a) 
Grand average waveform at electrode P3. (b) Average amplitude topograph at 
155 ms (N2 vale) and 485 ms (LPC peak). 
 

B. Active component: LPC for better classification  
Figure 2 depicts the detection accuracies averaged across 

all subjects using the traditional ‘area’ method [2], which is 
calculated as a function of the number of trials averaged for 
each target voice. If the N2 or LPC feature was used 
separately, the detection accuracy was lower than in the 
combination case.  The graph also shows that the LPC 
component contributes more than the N2 component. In this 
paradigm, the subject’s voluntary response of discriminating 
the auditory stimulus laterality involves the mental processes 
of working memory and decision making, thus the LPC here 
is an active component. This paradigm is different from the 
traditional passive auditory P300, in which the subject only 
needs to silently count the number of target appearance. 

  
Fig.2 Average accuracy of all subjects as a function of the number of trials 
considered, using N2+LPC area (diamond curve), LPC area (square curve) 
and N2 area (circle curve), respectively. 

C. Adaptive approach: track the dynamics 
Figure 3 displays a typical block during which the subject’s 

performance varied across trials. The upper plot shows the 
values of SVM discriminant function (DF) using fixed 
number of averaged trials (15 trials for this case). Evidently, 
the largest difference between target and non-targets does not 
appear at the 15th trial. This is usually caused by the fatigue 
and/or mental state changes of the subject during continuous 
auditory stimulation in a block. Our proposed adaptive 
approach tracks the changing state of subject using online 
estimation of the posterior probability ( )nP k∗ , and outputs the 

result of the current block immediately after ( )nP k∗  is higher 

than the preset threshold. The black asterisks on the target 
curve indicate suitable number of averaging trials when 

( )nP k∗  reached the preset threshold. In the adaptive case, 

4-trial averaging achieved a better result than that of 15-trial. 
As shown in the upper plot, this solution can not be found by 
traditional method which employs the value of SVM 
discriminant function directly. 
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Fig.3 Dynamics of a subject’s brain state in active auditory BCI shown as 
discriminant function value and posterior probability 

D. Performance comparison 
In the case of P300-based BCI, a traditional approach is to 

fix the number of averaging trials and combine trials by 
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adding the discriminant function values of EEG epochs from 
consecutive trials. The stimulus with the highest total DF 
value is selected as the target. Since the possible number of 
trials in our case ranged from 3 to 15, we selected the fixed 
numbers 3, 10 and 15 for comparison. The threshold in our 
adaptive approach was set at 90%, 80% and 70% of the 
cross-validation accuracy.  

The average results of eight subjects are shown in Figure 4. 
In one block, the mean number of averaged trials of our 
adaptive method was 6.0, 5.5 and 4.8 for λ=90%, 80% and 
70% respectively (dark gray bars d-f in Fig4a). Even with so 
few trials, the online accuracy was better than that of ‘10 
trials’ and ‘15 trials’ (light gray bars b and c in Fig4b). This 
leads to a significant improvement of information transfer 
rate (ITR) as shown in Fig4c. Although the ITR of ‘3 trials’ 
(light gray bar a in Fig4c) is close to our adaptive approach, it 
cannot be used in a practical system because of its extremely 
low online accuracy. 
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Fig. 4 Comparison of the average results of (a) trail number used per block (b) 
online accuracy (c) online information transfer rate. The fixed-number 
method is represented by the light gray bar, in which a, b, and c denotes 3, 10 
and 15 trials respectively; the adaptive method is represented by the dark gray 
bar, in which d, e, and f denotes using 90%, 80%, and 70% of 
cross-validation accuracy as the threshold respectively. 

IV. DISCUSSION AND CONCLUSION 
Although our active auditory BCI paradigm shares some of 

the features of the classical auditory P300 paradigm, here the 
subject’s active response to target voice elicits a prominent 
late positive component (LPC), which has larger amplitude 
and longer latency than typical P300 response [6]. Previous 
studies have found that the active response involving memory 
usually generates a LPC, which may be a subcomponent of 
P300 [8]. Notably, this active component is not 
stimulus-locked, but response-locked [9], which implies that 
the subject can be trained to achieve better performance in an 
active auditory BCI paradigm than in the classical P300 
paradigm. 

Recently, adaptive strategy has been adopted in some the 
P300-based BCIs. Lenhardt et al. estimated the score of each 
choice in P300 speller array being the target using training 
data, and then a preset empirical threshold was used to 
adaptively determine how many trials needed to be averaged 
to reach a satisfactory accuracy [12]. Zhang et al. modeled the 
EEG signals of three possible states (target P300, non-target 
P300 and non-control) by using Gaussian distribution in the 
margin space of support vector, and derived the likelihood of 
each state. The state with highest posterior probability and 
reached a preset threshold was selected as the most possible 

state. Then the target letter to be communicated was decided 
by traditional SVM classification [13]. Both of these two 
adaptive methods used an empirical threshold for adaptive 
determination of number of averaging trials, which has no 
prediction of final target detection accuracy. In our adaptive 
approach, the threshold was explicitly set as the probability of 
target detection and was estimated from training data, which 
is a reasonable prediction of final detection accuracy.  

In conclusion, an adaptive approach of deciding the 
optimal number of averaging trials was showed to improve 
the accuracy and information transfer rate of an active 
auditory BCI, and its feasibility and advantage was 
demonstrated. 
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