
 
 

 

 

  

Abstract—Previous research has shown that neuronal 
activity can be used to continuously decode the kinematics of 
gross movements involving arm and hand trajectory. However, 
decoding the kinematics of fine motor movements, such as the 
manipulation of individual fingers, has not been demonstrated. 
In this study, single unit activities were recorded from task-
related neurons in M1 of two trained rhesus monkey as they 
performed individuated movements of the fingers and wrist. 
The primates’ hand was placed in a manipulandum, and strain 
gauges at the tips of each finger were used to track the digit’s 
position. Both linear and non-linear filters were designed to 
simultaneously predict kinematics of each digit and the wrist, 
and their performance compared using mean squared error 
and correlation coefficients. All models had high decoding 
accuracy, but the feedforward ANN (R=0.76-0.86, MSE=0.04-
0.05) and Kalman filter (R=0.68-0.86, MSE=0.04-0.07) 
performed better than a simple linear regression filter (0.58-
0.81, 0.05-0.07). These results suggest that individual finger and 
wrist kinematics can be decoded with high accuracy, and be 
used to control a multi-fingered prosthetic hand in real-time. 

I. INTRODUCTION 
 revious work has shown that neuronal ensemble activity 
from various motor areas can be used to continuously 

predict the kinematics for gross movements of a single 
effector, such as during reach [1,2] or control of a computer 
cursor [3,4]. However, in order to achieve neural control of 
advanced upper-limb neuroprostheses, there is also a need to 
develop Brain-Machine Interfaces (BMI) for dexterous 
movements, such as the manipulation of individual fingers. 

We have recently demonstrated neural decoding of 
discrete flexions and extensions of individual fingers and the 
wrist [5,6], but for truly dexterous control of a multi-
fingered prosthetic hand it will be necessary to continuously 
decode the kinematics of multiple digits. Single-unit 
activities were recorded from a population of neurons in the 
primary motor cortex (M1) hand area of two male rhesus 
monkeys during individuated flexion and extension 
movements of each digit and the wrist. Simultaneous 
kinematics of each digit were obtained through strain gauges 
mounted on microswitches on the tip of each finger.  

Popular methods for decoding activity from neuronal 
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ensembles include population vectors (PVs) [7], linear 
filters, and artificial neural networks (ANNs). PVs have 
proven successful in decoding discrete movements in center-
out tasks [7], and may not be well suited for continuous 
decoding. Linear regression filters and ANNs have been 
effective for real-time neural control of a 2D cursor [4] and 
prediction of hand trajectory [2], but both lack a clear 
probabilistic model and do not incorporate temporal 
information. More recently, Kalman filters have been used 
to decode hand position [8] and trajectory of a computer 
cursor [9] using a recursive, probabilistic approach. 

In order to determine the best approach to model the data 
for this particular task, three different algorithms were used 
to decode the kinematics of each finger and the wrist from 
the same population of M1 neurons – a linear regression 
filter, a feedforward ANN, and a Kalman filter. The results 
of each model were then compared using the mean squared 
error and Pearson correlation coefficients. 

This work demonstrates how neural activity can be used 
to simultaneously predict the kinematics of multiple end-
effectors, and lays the foundation for dexterous 
manipulation of a multi-fingered hand neuroprosthesis. 

II. METHODS 

A. Experimental Setup 
Two male rhesus monkeys (monkey C, monkey K) were 

trained to individually flex or extend each digit and the wrist 
of the right hand by operating a pistol-grip manipulandum 
(see Fig. 1, inset).  By flexing or extending each digit a few 
millimeters, the monkey closed microswitches at the tips of 
each finger as shown in Fig. 1. The position of each finger 
was obtained from switch-mounted strain gauges on either 
sides of the fingertip, and a potentiometer transduced wrist 
flexion and extension.  

A row of LEDs above each switch were illuminated 
instructing the monkey to perform 12 distinct movements. 
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Figure 1. Illustration of strain guagues mounted at microswitches at the tip 
of each finger of the manipulandum (from [10]). 
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Each instructed movement is abbreviated with the first letter 
of the movement type (f=flexion, e=extension), and number 
of the instructed digit (d1=thumb…d5=little finger, d6 or 
w=wrist; e.g. 'e4' indicates extension of ring finger). Fig. 1 
shows the average analog traces from strain-gauges during 
instructed flexion movements for Monkey K. A detailed 
description of the behavioral task can be found in [10]. 

Well-isolated single units with task-related activity were 
recorded sequentially in the M1 hand area (anterior bank of 
the central sulcus), contralateral to the trained hand (monkey 
C, n=49; monkey K, n = 115). Up to 15 trials per movement 
type were recorded during daily 2-to-3-hour recording 
sessions. Simultaneously recorded activity of multiple single 
units was simulated by aligning the activity of each unit at 
the time of switch closure.  

B. Continuous Decoding of Finger and Wrist Kinematics 
Three different models were used to decode the 

kinematics of each finger and the wrist from the same 
population of M1 neurons. All models were trained using 
the neuronal firing rate over a 100 ms window shifting every 
20 ms. Mutually exclusive trials were used for training (100 
sets), validation (50 sets), and testing (100 sets). 
 

1) Linear Regression Filter 
The first approach used a linear filter to represent each 

decoded parameter as a weighted sum of the firing rate [2],  
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where yk is the kinematic parameter recorded from the strain 
gauge for digit k, xi is the firing rate of neuron i, wi is the 
weight for the neuron, N is the total number of neurons, and 
bk is a bias term.  

Multiple linear filters were used to simultaneously extract 
the kinematics of each digit and the wrist. The system of 
equations was set up as follows: 

WXY =                    (2) 

where Y is the matrix of kinematic parameters recorded from 
the strain gauges, X is the matrix of neuronal firing 
rates, and W are the weights of the model. The bias term was 
calculated by appending a row of ones to matrix X. The 
optimal weights were calculated using the least squares 
solution, 

( ) YXXXW TT 1−
=               (3) 

2) Feedforward ANN 
The second approach was to use a multilayer, feedforward 
Artificial Neural Network (ANN), which have been widely 
used in non-linear regression, function approximation, and 
classification [11]. As before, the relationship between 
finger position and neural activity can be modeled as, 
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but where g(x) is a non-linear transformation of the firing 
rate activity. The ANN was designed with a single hidden 
layer containing 25 neurons with a tan sigmoidal transfer 
function. Dimensionality of the input space was reduced by 
performing Principle Component Analysis (PCA), and 
retaining those components that cumulatively contributed to 
>95% of the total variance. The networks were trained 
offline in MATLAB 7.4 (Mathworks Inc.), with the optimal 
weights calculated using the scaled conjugate gradient 
algorithm and early validation stop to prevent overfitting. 
 

3) Kalman Filter 
As opposed to the feedforward model, a Kalman filter [9] 

models the relationship between neural activity and finger 
and wrist position by using a probabilistic approach that 
incorporates prior events. 

In the Kalman framework described in detail in [9], the 
position of each end-effector is modeled as the system state, 
Y, and the firing rate is modeled as the observation, X. 

[ ]TKyyY ...1=  where yk is strain gauge value for each digit 

[ ]TNxxX ...1=  where xn is firing rate of each neuron 

The Kalman model makes two important assumptions:  
1) The observations are a linear function of the current 

system state, 

)()()()( tqtYtHtX +=              (5) 

where H(t) is the coefficient matrix and q(t) ~ N(0,Q). 
2) The current system state is a linear function of the 

previous system state, 

)()()()1( twtYtAtY +=+             (6) 

where A(t) is the coefficient matrix, and w(t) ~ N(0,W). A 
and H were assumed to be constant and calculated offline 
using a least squares approach. 

At each time step, we first calculate an a priori estimate 
Y’ using Eq. 5 and calculate its error covariance matrix, P’, 

)1()(' −=
∧∧

tYAtY                (7) 
WAtAPtP T +−= )1()('             (8) 

 
 

Figure 2.  Average analog traces from the strain gauges during instructed
flexion movements (e.g. top left plot shows simultaneous traces of all five
fingers and wrist during an instructed flexion of the thumb). Similar traces 
were obtained for instructed extension movements. 
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We then calculate the Kalman gain, K, update the estimate 
with an a posteriori estimate using new measurement data 
and calculate the posterior error covariance matrix, P, 

1))('()(')( −+= QHtHPHtPtK TT         (9) 

))(')()(()(')( tYHtXtKtYtY
∧∧∧

−+=          (10) 
)('))(()( tPHtKItP −=              (11) 

The Kalman gain produces a state estimate that minimizes 
the mean squared error [9].  

III. RESULTS  
The sample decoding results in Fig. 3 from monkey K, 

demonstrate that the predicted output (red) was highly 
correlated with the actual hand kinematics (blue) using all 
three decoding models. Each plot shows the simultaneous 
reconstructed kinematics for all five digits and the wrist 
during instructed flexion movements. 

Two different performance metrics were used to evaluate 
the decoding accuracy: mean squared error (MSE) and 
Pearson correlation coefficients (R). Table I and Table II 
summarize the decoding results for monkey C (n = 49) and 
monkey K (n = 115) respectively. Fig. 4 compares the MSE 
and correlation coefficients for all three decoding 
approaches, and across each end effector. Fig. 4A and 4B 
show the results for monkey C, while Fig. 4D and 4E show 
the results for monkey K.  

As can be seen, the feedforward ANN appears to have the 
best performance for both monkey C (R=0.76; MSE=0.05) 
and monkey K (R=0.86; MSE=0.04). Furthermore, for both 
monkeys the poorest performance appears with decoding of 
the wrist kinematics (two-way ANOVA, p<0.05). This is 
consistent across all three decoding models (monk C: linear, 
R=0.25; ANN, R=0.54, Kalman, R=0.38 – monk K: linear, 
R=0.66; ANN, R=0.77, Kalman, R=0.72) which suggest that 
this movement parameter is especially difficult to decode 
given the available neuron population. 

Fig. 4C (monkey C) and Fig. 4F (monkey K) show the 
average correlation coefficient (R) as a function of randomly 
selected subpopulations of neurons for the linear regression 
(blue), ANN (red), and Kalman (green) filters. The results 
were averaged across five random subsets of a given number 
of neurons. Both the feedforward ANN and Kalman filter 
perform statistically significantly better than the linear 
regression filter (two-way ANOVA, p<0.05). 

 

 
 

 
 

 
 

Figure 3.  Reconstruction for the position of each end-effector using a) linear
model, b) feedforward ANN, and c) Kalman filter. The predicted kinematic
output (red) for each digit and the wrist was highly correlated with the actual
hand kinematics (blue) using all three decoding models. Results are shown
for monkey K (n = 115). 

TABLE I 
SUMMARY OF  DECODING RESULTS FOR MONKEY C (N=49) 

Linear ANN Kalman 
R MSE R MSE R MSE 

thumb 0.71 0.03 0.86 0.02 0.82 0.02 
index 0.55 0.05 0.74 0.04 0.64 0.05 
middle 0.65 0.10 0.78 0.06 0.73 0.09 
ring 0.64 0.05 0.80 0.03 0.73 0.04 
pinky 0.69 0.09 0.85 0.05 0.78 0.08 
wrist 0.25 0.11 0.54 0.08 0.38 0.11 
average 0.58 0.07 0.76 0.05 0.68 0.07 

 

TABLE II 
SUMMARY OF  DECODING RESULTS FOR MONKEY K (N=115) 

Linear ANN Kalman 
R MSE R MSE R MSE 

thumb 0.88 0.02 0.89 0.02 0.93 0.01 
index 0.82 0.05 0.88 0.03 0.87 0.04 
middle 0.83 0.04 0.86 0.04 0.88 0.03 
ring 0.83 0.05 0.87 0.04 0.88 0.03 
pinky 0.82 0.06 0.87 0.05 0.87 0.05 
wrist 0.66 0.10 0.77 0.08 0.72 0.10 
average 0.81 0.05 0.86 0.04 0.86 0.04 

A 

B 

C 
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IV. DISCUSSION AND CONCLUSION 
This work demonstrates that it is indeed possible to 

decipher the neural coding of individual finger and wrist 
kinematics, which paves the way for dexterous manipulation 
of a multi-fingered hand prosthetic hand. The results do 
indicate, however, a negative bias towards decoding of wrist 
movements for both monkeys. This is likely due to the fact 
that the recording location of electrodes may have been 
biased to the lateral M1 hand area, and thus did not include 
as many neurons coding for wrist movements [5]. 
Furthermore, mechanical stops on the manipulandum may 
have prevented complete flexion and extension of the wrist 
(note saturation of wrist measurement during ‘fw’ in Fig. 2).  

Furthermore, it appears that for this particular task a 
nonlinear decoding filter may be appropriate. Although the 
feedforward ANN and Kalman filter show comparable 
correlation coefficients, the ANN has smaller MSE values - 
particularly for fewer neurons (data not shown). Given the 
dexterity of the motor movements, and the fact that we are 
tracking multiple end-effectors simultaneously, it is not 
surprising that a nonlinear filter is better able to decode 
finger and wrist kinematics. 

It is important to note, however, that even a simpler linear 
regression algorithm still provides respectable decoding 
accuracy (see Fig. 4C,F), and thus would be an acceptable 
low-cost alternative for embedding in the hardware 
controller of a prosthetic arm. 

Future experiments aim to extend the techniques 
developed in this paper, in order to decode entire kinematics 
of the hand and arm as subjects perform less constrained 
movements. By demonstrating the decoding of individual 
finger primitives, these findings can be extended to more 

complex dexterous tasks involving multiple fingers and 
different grasp conformations of the hand. 
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Figure 4. Mean square errors and correlation coefficients for monkey C (top row) and monkey K (bottom row). All movements are decoded with high 
accuracy, although all three decoding models performed worst with wrist movements. Plots of the average correlation coefficient as a function of number of 
neurons (right column) show that the linear filter (blue) performed worse than both the ANN (red) and Kalman filter (green). 
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