
  

  

Abstract—Rhythmic electroencephalographic (EEG) 
activities associated with movement imaginations are widely 
used in developing noninvasive Brain-Computer Interface 
(BCI) towards replacing or restoring the lost motor function in 
the paralytics. And it is of great importance to develop imaging 
techniques to enhance the spatial resolution and specificity of 
the EEG modality. In our work, we developed an innovative 
approach of imaging the distributed rhythmic brain activity in 
the spectral domain. In the present study, we evaluated the 
proposed technique in experimental data of offline and online 
imaginations in naive and well-trained BCI subjects. Our 
results identified the cortical origins of sensorimotor rhythms. 
We also applied the source imaging approach to classifying 
mental states for BCI applications and demonstrated its 
feasibility and superior performance. 

I. INTRODUCTION 
HE study of Brain-Computer Interface (BCI) is of great 
promise in rehabilitating paralytic patients by providing 

them with a non-muscular channel of communication and 
control [1]. BCI based on electroencephalographic (EEG) 
signals has the advantage of no surgical risk, signal stability 
and low cost. Particularly, rhythmic EEG signals used in 
movement imagination-based BCI has been demonstrated to 
provide a two-dimensional control that is within the range 
reported for invasive BCI studies in monkeys [2]. 

Several EEG studies have shown that the planning, 
execution and imagination of movement lead to a decrease 
of rhythmic EEG activity in the mu (8-12 Hz) and beta (13-
28 Hz) frequency bands, i.e. the sensorimotor rhythms [3]. 
Such characteristic decreases are used as control signals in 
BCI by classifying people’s mental states relating to the 
planning/imagination of different types of limb movements. 
However, EEG signals suffer from the low signal-to-noise 
ratio and also degraded temporal and spatial specificity due 
to the volume conduction effect, which limits our 
understanding of the sensorimotor rhythms and further 
advancement of EEG-based BCIs.  

Using recently developed EEG/MEG source imaging 
techniques, the movement-related rhythmic activities have 
been investigated with enhanced spatial resolution. Sources 
of mu rhythm during offline motor imagery were previously 
studied using dipole localization method [4, 5] or distributed 
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source imaging [4, 6, 7]. Different from the above studies in 
which source estimates are obtained from every sample 
point in the temporal domain, we have developed a new 
computationally efficient approach to estimate the sources in 
the frequency domain (Minimum Norm Estimate in 
Frequency Domain, MNEFD) [8]. Using this method, the 
cortical distribution of source power in a specific frequency 
band can be directly estimated from single trial EEG data. 

In the present study, we evaluated the Minimum Norm 
Estimate in the Frequency Domain (MNEFD) method in 
EEG experimental data from both naive and well-trained 
subjects performing movement imaginations in offline and 
online BCI settings respectively. We imaged the cortical 
modulations of sensorimotor rhythms associated with 
imagined movements of left and right hand. Also we 
investigated the feasibility of classifying imagination types 
based on the estimated cortical sources.  

II. METHODS 

A. Experimental Setup and Data Acquisition 
One naive subject participated in the offline imagination 

experiments and two well-trained subjects participated in the 
online BCI experiments. All subjects were healthy and gave 
written consent to the research protocols approved by the 
Institutional Review Board of the University of Minnesota. 
EEG activity was recorded from 64 electrode locations 
distributed over the entire scalp. The signals were acquired 
with a BrainAmp amplifier (BrainProducts, Germany) at the 
sampling frequency of 1000 Hz. 

In the offline imagination experiment, the subject was 
instructed to imagine or execute the movement of left or 
right hand according to the texts shown on the computer 
screen. The task and rest conditions appeared in an 
interleaved block manner, which each lasted for 20 s. Within 
a task block, there were six trials during which subjects 
performed the instructed task for 2 s (imagination or 
movement execution) interleaved with inter-trial intervals of 
varying durations from 1 s to 2 s. The same tasks were 
performed within a block and the sequence of block types 
was randomized and balanced across runs. Eight runs of 
offline imagination were collected for the subject, resulting 
in 96 trials for each task condition. 

In the online BCI experiment, subjects imagined left/right 
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hand to move a cursor to hit the left/right target on the 
computer screen. Using the general-purpose system 
BCI2000 [9], the horizontal cursor movement was controlled 
by a linear equation of a weighted combination of the 
amplitude in mu band from EEG channels over the left and 
right hemisphere. A trial started when a target appeared at 
one of two locations on the periphery of the screen at 0 s, 
with a fixation cross at the center till inter-trial interval. One 
second later, the cursor appeared in the middle of the screen 
and began to move horizontally with its movement 
controlled by the user’s EEG activity until it hit a target 
within 6 s. The experiment consisted of eight 5-min runs 
separated by 2-min breaks, and each run had 30 - 40 trials. 

The individual anatomical MRI data set consisted of 176 
contiguous sagittal slices with 1 mm slice thickness (matrix 
size: 256 * 256, FOV: 256mm * 256mm). The images were 
acquired using a Turboflash sequence (TR/TE=20 ms/5 ms) 
on a 3T MRI system (Siemens Trio, Siemens, Erlangen, 
Germany). The physical landmarks (nasion and left, right 
preauricular points) and electrode positions were digitized 
using a Polhemus Fastrak digitizer (Polhemus, Colchester, 
VT) and 3DSpace software from the SCAN software 
package. 
 

B. Minimum Norm Estimate in the Frequency Domain 
The EEG source activities were computed using the 

MNEFD method [8], which provides a capability to imaging 
rhythmic modulation associated with motor imagery tasks 
from single trial data. 

 Using a cortically constrained distributed source model 
[10, 11, 8], the relationship between source amplitudes and 

scalp potentials can be expressed by Φ(t) = AS(t)+N(t), 
where Φ is a matrix of the measured EEG. S is the unknown 
matrix of amplitudes of the dipoles along the time. A is the 
transfer matrix. Data are corrupted by an additive noise N. 
The cortical surface reconstructed from individual subject’s 
MRIs will be used to restrict the source locations and 
orientations. Although the measured data Φ do not give the 
source strengths S unambiguously as the number of 
discretized sources is larger than the number of sensors, a 

minimum-norm estimate (MNE) in the sense of L2-norm can 
be obtained by applying a linear inverse operator to the 
measured signals Ŝ = WΦ, where W can be obtained by 
W=RAT(ARAT+ λ2C)-1, and λ is regularization parameter 
[12, 8]. As no prior knowledge of source activity is assumed, 
R is an identity matrix here. The data with 15% lowest 
global field power will be selected for noise estimation. The 
noise covariance matrix C is constructed as a diagonal 
matrix with diagonal elements proportional to the average 

noise power over all channels. In order to compensate the 
tendency of the minimum-norm solution to favor superficial 
sources, depth-weighting method will also be used. Using 
the Fourier transform, both single-trial S(t) and Φ(t) can be 
transformed to S’(f) and Φ’(f) respectively in the frequency 
domain [13]. Thus, we will have the following linear 
equation Φ’(f) = AS’(f) + N’(f) which will hold with both the 
real ΦRe’(f) and imaginary part ΦIm’(f). Then ΦRe’(f) and 
ΦIm’(f) of the Fourier transformed signal will be applied to 
the MNE method resulting in the current distributions SRe’(f) 
and SIm’(f). The real and imaginary parts will be subjected to 
source estimation in L2-norm and then summed up to obtain 
the single-trial source power. 

 

C. Data Analysis 
After standard preprocessing, EEG data were segmented 

into epochs starting from 1 s before the trial till 1 s after the 
disappearance of imagination cue in the offline setting or 1 s 
after cursor hitting the target in the online BCI. Time-
frequency representations (TFR) of these single-trial EEG 
data were computed individually using a Morlet wavelet-
based technique over the 6 - 30 Hz frequency range, with 
center frequencies at 1 Hz intervals. The TFR changes 
during offline imaginations from the naive subject (subject 
#1) were plotted in t statistic, by contrasting the TFR during 
the task period to the TFR of 100 ms before the trial onset. 

The single-trial source power during the imagination and 
baseline periods were computed separately. Based on the 

 
Fig. 1. Time-frequency representations of power change during 
imagination in relative the baseline from C3 and C4 channels in the 
naïve subject. Only t statistic thresholded by p < 0.05 was plotted. 
The black rectangle indicated the selected time and frequency window 
for source analysis. 

 
Fig. 2.  The source (upper row) and scalp (lower row) distributions of 
percentage change during imagination of left hand (right column) and 
right hand (left column) in the naïve subject. The source distribution 
was thresholded using two-sample t test between imagination and 
baseline conditions (p < 0.05, corrected). 
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source estimates, the negative (ERD) or positive (ERS) 
spectral change is characterized by comparing the 

distributions of mu powers for each imagery type with the 
pooled rest distributions. The relative change was defined as 
the difference of power between task and baseline conditions 
and normalized by the baseline power. The percentage maps 
were thresholded according to the p value of the two-sample 
t test with Bonferroni correction. 

Fisher Linear Discriminant (LDA) analysis was applied to 
the source-estimated and scalp-derived signals during offline 
imagination in the naive subject. EEG power in the mu 
frequency band was extracted from the regions (channels or 
dipoles) characteristic to the imagination of left/right hand 
and averaged respectively. Thus features of two dimensions 
were classified into imagination of left hand or right hand 
using the LDA. The sequence of trials were randomized and 
80% of them were used for training the classifier while the 
rest for testing. The randomization and classification 
procedures were repeated for 100 times. 

III. RESULTS 
Fig. 1 plotted the TFR changes of C3 and C4 channels 

during offline imaginations from the naive subject (subject 
#1) in t statistic (p<0.05). A decrease in the mu frequency 
band was shown accompanying the imagination dominantly 
on the contralateral electrode. Compared with the right hand 
imagination, imagined movement of left hand generated a 
stronger decrease at the ipsilateral side. Fig. 2 illustrated the 
percentage change in mu frequency band from source 
estimates and scalp recordings associated with imaginations 
of left hand and right hand from subject #1. The modulation 
of mu rhythms was shown to mainly originate from the 
sensorimotor cortex. 

The average accuracy of target hits out of all the trials 
from the two subjects was 90.48± 4.85% and the average 
hitting time was 2.62 ± 1.07 s. The cortical changes of mu 
rhythms during online BCI experiment were depicted in Fig. 

3 from the two well-trained subject (subjects #2 and #3). It 
was consistently shown in the two subjects that decrease of 
mu rhythms were found at the contralateral side of 
sensorimotor cortex while there was some increased activity 
at the ipsilateral side. The dominant contralateral decrease in 
mu rhythm was in line with the pattern of the offline 
imagination setting where no online feedback was provided. 

The distributed features from source and scalp power 
were plotted in Fig. 4. The average classification accuracy 
for source- and scalp-based features was 75.7 ± 5.73% and 
62.2 ± 7.20% respectively. 

IV. DISCUSSION 
In the present study, we evaluated the MNEFD method in 

experimental data of movement imaginations in offline and 
online settings. EEG activities associated with movements 
and imaginations have been studied using advanced imaging 
techniques with high spatial resolution. Although rhythmic 
activities from scalp recordings are widely exploited for BCI 
control [1, 2], it is still unclear how the cortical rhythmic 
activities are distributed in the brain and how they correlate 
with the imaginations during the online and offline 
processes. Our results demonstrated that the distributed EEG 
rhythms originated from the sensorimotor cortex and 
indicate their dominant role in underlying the cursor control. 
Our results were consistent with previous studies on offline 
imagination in identifying the primary motor cortices as the 
source of sensorimotor rhythms [3, 4, 5, 6]. Furthermore, we 
extended previous studies by imaging the cortical activity 
during online control. 

Tremendous effort has been made to improve the spatial 
resolution of EEG. Previous studies on imaging the 
movement-/imagination-related activities have been 
focusing on reconstructing the spatio-temporal source 

 
Fig. 4.  Distribution of source- (upper) and scalp-based (lower) 
features used for classification. The average accuracy by LDA 
classifier was 75.7 ± 5.73% and 62.2 ± 7.20% respectively. The 
symbols ‘o’ and ‘+’ represent the features corresponding to 
imaginations of left hand and right hand, respectively. 

 
Fig. 3.  Cortical distributions of percentage change in mu rhythm 
during imagination of right hand (left column) and left hand (right 
column) in the two well-trained subjects. Each map was thresholded 
using two-sample t test between imagination and baseline conditions 
(p < 0.05, corrected) 
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activity [4, 5, 7]. In the present MNEFD approach, Fourier 
transformation converts EEG signals in the temporal domain 
into concrete representation in the frequency domain; this 
enables one to directly image the source activities in the 
targeted frequency band, avoiding laboriously searching 
each time-sample over the whole segment of oscillatory 
signals.  

By deconvolving the sensorimotor rhythms from scalp 
measurements, the source imaging technique promises to 
provide a new signal channel with enhanced spatial 
resolution and specificity. In the pilot study, we 
demonstrated the feasibility of applying the MNEFD 
approach in classifying mental states of movement 
imaginations. We also demonstrated the source-derived 
signal has a superior performance over the scalp-derived 
activity in the naive subject. 
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