
  

  

Abstract— This study aims to explore whether human 
intentions to move or cease to move right and left hands can 
provide four spatiotemporal patterns in single-trial non-
invasive EEG signals to achieve a two-dimensional cursor 
control. Subjects performed motor tasks by either physical 
movement or motor imagery. Spatial filtering, temporal 
filtering, feature selection and classification methods were 
explored to support accurate computer pattern recognition. 
The performance was evaluated by both offline classification 
and online two-dimensional cursor control. Event-related 
desynchronization (ERD) and post-movement event-related 
synchronization (ERS) were observed on the contralateral 
hemisphere to the moving hand for both physical movement 
and motor imagery. The offline classification of four motor 
tasks provided 10-fold cross-validation accuracy as high as 
88% for physical movement and 73% for motor imagery. 
Subjects participating in experiments with physical movement 
were able to complete the online game with the average 
accuracy of 85.5±4.65%; Subjects participating in motor 
imagery study also completed the game successfully. The 
proposed brain-computer interface (BCI) provided a new 
practical multi-dimensional method by noninvasive EEG signal 
associated with human natural behavior, which does not need 
long-term training. 

I. INTRODUCTION 
HE brain-computer interface (BCI) enables direct brain 
communication with the external environment for 
patients who partly or entirely lose voluntary muscle 

contraction, i.e. in the ‘locked-in’ state [1]. Most BCI 
applications need multidimensional control, which is highly 
promising using invasive methods [2, 3], or semi-invasive 
methods using electrocorticography (ECoG) [4]. However, 
the noninvasive methods, in particular, 
electroencephalography (EEG), mainly support one 
dimensional (binary) control [5, 6]. Successful two-
dimensional BCI using noninvasive EEG signals [7] 
required long-term training for the subjects before attaining 
reliable two-dimensional control. Sequential combination of 
one-dimensional control may achieve two-dimensional 
control [8, 9], however, direct two-dimensional control will 
be more effective and convenient for patients with 
movement disorders. 
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Human limbs are controlled by contralateral brain 
hemispheres [10-12]. During physical movement or motor 
imagery of right and left hand movements, beta band brain 
activation (15-30 Hz), i.e. event-related desynchronization 
(ERD) occurs predominantly over the contralateral 
hemispheres; the brain activity associated with ceasing to 
move, event-related synchronization (ERS) can also be 
found over the contralateral motor areas. Therefore, reliably 
decoding the movement intention of right and left hand, 
which are associated with different spatiotemporal patterns, 
may potentially provide four reliable features for two-
dimensional control.  
     The aim of this study is to introduce a novel BCI 
paradigm/method: decoding ERD and ERS associated with 
natural motor behavior so that the subjects can control cursor 
movement in a two-dimensional plane with minimal 
training. We have tested whether the decoding of multiple 
movement intentions is reliable enough to control a two-
dimensional computer cursor for a possible multi-
dimensional brain-computer interface (BCI). The robustness 
of two-dimensional cursor control has been tested with an 
online virtual computer game.  

II. METHOD 

A. Subjects 
Five right-handed healthy volunteers participated in this 

study. All subjects gave informed consent. The protocol was 
approved by the Institutional Review Board. 

B. Experimental paradigm 
All subjects participated in the first session, i.e. motor 

execution with physical movement. Two subjects (S1 and 
S2) also participated in the second session, i.e. motor 
imagery. During the recording, subjects were seated in a 
chair with the forearms semi-flexed and supported by a 
pillow. They were asked to keep relaxed during the 
experiment. During motor imagery, one of the authors 
monitored EMG activity and remind subjects to relax their 
muscle when EMG presented. Trials with EMG 
contamination were excluded from further analysis. Each of 
the motor execution with physical movement and motor 
imagery sessions contained an initial calibration step to 
determine the optimal frequency band and spatial channels. 
The selected features and generated model were then used to 
test an online two-dimensional-cursor-control game. 
Duration of calibration session was about 1 hour, where 
about 3 to 4 datasets were recorded, each of which contained 
48 trials of movements. 
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During calibration, visual stimuli were periodically 
presented on a computer screen. In the first session (physical 
movement), there were four cues in the task paradigm, 
‘RYes’, ‘RNo’, ‘LYes’, and ‘LNo’ (‘R’ indicating right hand 
task, and ‘L’ for left hand task). The visual cue was 
displayed for a T1 period in green color, followed by a color 
change of the cue to blue color. The second cue was 
displayed for a T2 period, after which the cue disappeared. 
T1 and T2 window were set to 2.5 s initially. Subjects were 
instructed to begin repetitive wrist extensions of the right 
arm at the onset of the initial cue ‘RYes’ or ‘RNo’. At the 
time of color change, the subject was instructed to continue 
movement with the ‘Yes’ cue or abruptly relax and stop 
moving with the ‘No’ cue. The task was similar for ‘LYes’ 
and ‘LNo’, where subjects used left hand instead. In the 
second session, subjects imagined the tasks following the 
corresponding cues onsets. 

In a 2D plane, the cursor may move to four directions: up, 
down, right and left, each of which was linked to one of the 
four movement tasks. We intended to decode movement 
intentions to determine the subject’s control of cursor 
direction. The detection strategy was shown in Fig. 1. For 
example, if the subject wanted to move the cursor to the 
right, he needed to perform the ‘RYes’ task, either physical 
or motor imagery so as to develop an ERD pattern on the left 
hemisphere.  

 

 
Figure 1.  Scheme of 2D cursor control. Four directions control by spatial 
detection of ERD/ERS on right/left hemisphere associated with intention to 
move or cease to move of left/right hand. In order to control cursor moving 
to left (‘LYes’ direction), subjects may perform sustained physical 
movement/motor imagery so that ERD on the right hemisphere can be 
detected. It is similar for other direction controls. 
 

Upon successfully decoding movement intentions in the 
offline analysis, the subjects played a game of two-
dimensional control of cursor movement on a computer 
monitor. A brief description of the 2D cursor-control game 
is given here since the detailed design of the online game 
was similar to the one given for binary cursor-control game 
[9]. Subjects were instructed to move the cursor to the target 
and avoid a designated ‘trap’. Cues were presented with the 
same duration as that in the calibration session. 
Classification of ‘Yes’ and ‘No’ trials of right and left hands 
were used to direct 2D control correlated with cursor 
movement. As illustrated in Fig. 1, the detection of ‘LYes’ 
will direct the cursor move to the left, and similar with the 
other directions.  
In the 2D game, subjects determined the path to reach the 

target using their own game strategy. From the example 
shown in Fig. 2(a), the subject may choose to move to the 
right instead of downward in that situation. It was also 
possible that the subject would choose to move up to the 
margin of the grid and then move along the margin to the 
target.  Due to the various strategies, it was difficult to 
determine the cursor-control accuracy from the path of the 
cursor movement. In the case of physical movement, we 
used the EMG activity in the detection window to interpret 
whether the subjects desired to move to one of four 
directions, and as a result, the control accuracy could be 
determined from the actual cursor movement from the EEG 
derived results. However, as there was no EMG activity in 
the sessions of motor imagery, we were unable to calculate 
the control accuracy. We evaluated the success of the two-
dimensional cursor control with motor imagery by whether 
the subjects could control the cursor to reach the target. 
 

 
Figure 2. Paradigm of two-dimensional cursor-control game. (a) A game 
grid is displayed for 2-3 s showing a cursor (blue), target (red) and trap 
(black). (b) All squares except those adjacent to the cursor are masked and 
green prompts are displayed in the adjacent squares. (c) After a T1 delay, 
these prompts turn blue and remain for a period of T2. (d) The subject’s 
response uniquely determines the cursor movement direction, which the 
cursor slides to. The entire process (a)-(d) then repeats for the next cursor 
move, and so on until the target is obtained, the trap is hit or too many 
moves have been made. 

C. Recording and data processing system 
EEG was recorded from 27 (tin) surface electrodes (F3, 

F7, C3A, C1, C3, C5, T3, C3P, P3, T5, F4, F8, C4A, C2, 
C4, C6, T4, C4P, P4, T6, FPZ, FZ, FCZ, CZ, CZP, PZ and 
OZ) attached on an elastic cap (Electro-Cap International, 
Inc., Eaton, OH, U.S.A.) according to the international 10-20 
system [13].  Surface electromyography (EMG) was used to 
monitor the movement and electrodes for bipolar 
electrooculogram (EOG) were also pasted. Signals from all 
the channels were amplified (g.tec GmgH, Schiedlberg, 
Austria), filtered (0.1-100 Hz) and digitized (sampling 
frequency was 250 Hz). The digital signal was online 
processed using a home-made MATLAB (MathWorks, 
Natick, MA) Toolbox: brain-computer interface to virtual 
reality or BCI2VR [8, 9].  

D. Computational methods for decoding movement 
intention 
We employed intensive computational methods . The 

online signal processing to decode movement intention 
consists of four steps: (1) spatial filtering, where surface 
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laplacian derivation (SLD) was applied. (2) temporal 
filtering: the power spectral density was estimated from the 
T2 window to distinguish ERD/ERS. Welch method was 
applied. We found that 4 Hz band-width under 50% 
overlapping segments provided a better ERD and ERS 
estimation for accurate 2D cursor control. (3) feature 
extraction: we reduced the channel number from 29 to 14, 
which covered both left and right motor area, and only alpha 
and beta band (8-30 Hz) activities were extracted for 
modeling and classification. Genetic algorithm with 
Mahalanobis linear distance (MLD) classifier was applied 
for feature evaluation. (4) classification: GA-MLD, Decision 
tree classifier (DTC), and Support vector machine (SVM) 
were employed and compared to determine a better 
performance of multi-classification. 

E. Neurophysiological analysis 
Offline data analysis was performed to investigate the 

neurophysiology following the tasks of ‘Yes’ and ‘No’ using 
the right or left hands. Epoching was done with windows of 
-2s to 7s and were linearly de-trended and divided into 
0.256s segments. ERD and ERS were obtained by averaging 
the log power spectrum across epochs and baseline corrected 
with respect to -2s to 0s. 

III. RESULTS 

 
                                              (a) 

       
                                               (b) 
Figure 3. Time-course and topography of ERD and ERS during physical 
movement (a) and motor imagery (b) following the calibration paradigm for 
subject1. Blue color stands for ERD; red color stands for ERS. T1 window 

is from 0s to 2.5s and T2 window from 2.5s to 5s. ERD was observed in T2 
window on left hemisphere during sustained right hand movement and ERS 
was observed in T2 window on left hemisphere with ceasing to move right 
hand. For left hand movement, similar patterns were observed on right 
hemisphere.  

 
Fig. 3 shows an example of time-frequency plots and head 

topographies of ERD or ERS for physical movement (a) and 
motor imagery (b) for subject 1. Channel C3 over left 
sensorimotor cortex and C4 over the right hemisphere were 
used for time-frequency plots. For physical movement, ERD 
in both alpha and beta bands from 10-30 Hz was observed 
over motor area contralateral to the hand moved. ERS was 
mainly observed in the beta band centered around 20 Hz 
over the contralateral motor area. Compared with ERD 
patterns, ERS was short-lasting in time but highly 
distinguishable. For motor imagery (b), ERD was observed 
in both alpha and beta band on the contralateral hemisphere 
with the hand moved, although ERD amplitude was smaller 
than that of physical movement. ERS in the T2 window was 
observed on the contralateral hemisphere in beta band (13-
24 Hz) only, and its amplitude was smaller than that of 
physical movement. The ERD and ERS associated with 
motor imagery also provided four spatially differentiable 
patterns, however, the smaller amplitudes of ERD and ERS 
with motor imagery may result less effective detection in 
single-trials. The patterns were similar for other subjects, 
except subject 4 didn’t show clear patterns, and we exclude 
data from subject 4 from further analysis. 

The comparison of 10-fold cross-validation accuracies 
using GA-MLD, DTC and SVM methods for S1, S2, S3 and 
S5 during physical movement is shown in Table 1.  

 
Table 1. 10-fold Cross-Validation Accuracy 

Subject GA-MLD(%) DTC(%) SVM(%) 
S1 
S2 
S3 
S5 

87.7 ± 1.29 
93.0 ± 1.97 
85.2 ± 0.95 
87.2 ± 0.58 

87.8 ± 1.47 
85.5 ± 3.87 
84.5 ± 2.30 
87.7 ± 1.75 

87.8 ± 1.31 
90.0 ± 3.12 
88.9 ± 1.04 
85.8 ± 2.13 

Average 88.3 ± 3.33 86.4 ± 1.64 88.1 ± 1.79 

 
There was no significant difference among these three 

methods through one-way analysis of variance (AVONA), 
F(1,2)=5.7, p-value<0.39, alpha=0.05.  

Since there was no significant difference among the 
intensive methods, DTC method was employed for the 
online 2D cursor control game. Except for S4, all the other 
four subjects were successful to control the cursor moving to 
the target by physical movement and the average online 
game performances for S1, S2, S3, and S5 were 92%, 85%, 
81%, and 84%, with the overall performance of 
85.5%±4.65%. S1 and S2 participated in the second session 
performing motor imagery tasks. Offline classification 
accuracy for S1 was 73%±5.97%, and for S2 was 
59.2%±3.63%, which were lower than those of physical 
movement with physical movement.  The two subjects both 
reported good concentration throughout the recording.  
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Online 2D cursor control game using motor imagery was 
performed by S1 and S2. S1 was able to move the cursor to 
the target; However, S2 performed less well than S1. The 
performance was consistent with the classification results for 
motor imagery.   

IV. DISCUSSION 
Throughout the experiment, EMG signal was monitored 

for all subjects, to make sure correct movements were 
performed and no EMG occurred during motor imagery. 
Further, feature analysis showed that beta activities 
restricted to motor areas were used for classification. 
Therefore, the EMG contamination was not a concern in this 
study. 

Wolpaw et al. introduced the information transfer rate 
(ITR) for a BCI as bits per minute (bpm) as a good 
measurement for both decoding rate and accuracy [14]. In 
our study of 2D control for a four-class mental task, the total 
duration of T1 and T2 windows was 5 s, i.e. 12 trials per 
minute. Therefore, the ITR was 13.9 to 16.5; the average 
was 15.5 bits per minute. Similarly, for motor imagery, the 
ITR was 4.15 bits per minutes to 8.03 bits per minutes. The 
results were comparable in terms of decoding rate and 
accuracy with previous studies (see review in [15]).  
    The two-dimensional BCI control in this study shows that 
robustness or accuracy was less with motor imagery than 
with physical movement. However, only two subjects have 
been studied with motor imagery so that further study with 
more subjects should be addressed.  For patients who are not 
in a ‘locked-in’ state but cannot produce reliable muscle 
contraction due to muscle weakness or spasticity, we would 
expect more reliable two-dimensional control with their 
limited motor output as this study demonstrates a highly 
reliable control with simple physical movement. 

In summary, ERD/ERS using our 2D natural paradigm 
present four distinguishable patterns as we expected, both in 
physical movement and motor imagery. Although variability 
might lead to considerable challenges in the classification 
process, the intensive methods we applied exhibit satisfying 
properties and robust results, making 2D control more 
reliable. It is worthwhile to pursue this potential system. If 
the design and signal processing methods can be further 
improved, BCI products will eventually offer those who 
have totally lost muscle control with convenient, fast and 
reliable control of mechanical devices. This will largely 
reduce the reliance on continuous support from others, and 
thus enhance their quality of life. 
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