
  

  

Abstract— This paper presents a model of the learning 

process occurring during operation of a closed-loop brain-

machine interface. The model consists of a population of 

simulated cortical neurons, a decoder that transforms neural 

activity into motor output, a feedback controller whose role is 

to reduce the error based on an error-descent algorithm, and 

an open-loop controller whose parameters are updated based 

on the corrections made by the feedback controller. We present 

evidence of the convergence of the internal model to the 

decoder’s inverse model and use global sensitivity analysis to 

study the convergence’s dependence on the parameters of the 

overall learning model. This model can be used as a simulation 

tool that predicts the outcome of closed-loop BMI experiments. 

I. INTRODUCTION 

RAIN-MACHINE interfaces (BMIs) are direct 

communication pathways between the brain and an 

external device, such as a computer cursor or a robot. A 

decoder transforms the recorded neural signals to motor 

commands that are used to control the external device, and 

information about the performance is given back to subject 

in some form of feedback, usually visual. Recent 

demonstrations in non-human primates have successfully 

achieved closed-loop BMI control of a mechanical arm in 2 

and 3-dimensional space [1], [2].  

In closed-loop BMI systems the decoder is usually 

obtained by recording neural signals of the subject during a 

manual task and then using these signals in conjunction with 

the recorded kinematics to solve a statistical inference 

problem, It has been shown that simple decoders have good 

predictive power in offline (i.e. open loop) simulations [7] 

although this performance is not guaranteed when switching 

to closed-loop BMI mode. This is because the brain changes 

its neural mapping while learning to control the BMI [4] and 

other factors out of the scope of this paper. 

Here we present a model of the learning process that 

occurs while learning to use a closed-loop BMI system. The 

model represents the brain as a dynamical system that adapts 

using the feedback information. Evidence that supports the 
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control and learning capabilities of the system is presented. 

Our goal is to study the underlying properties of the 

learning process, and see how the knowledge of these 

properties can be used to increase the performance of closed-

loop BMI systems.  

II. LEARNING MODEL 

A. Global description 

Several studies investigating the mechanisms used in 

motor learning suggest that the brain builds an inverse model 

of the system it is trying to control [5]-[8]. Based on these 

studies, it is reasonable to think that the brain encodes a 

model of the decoder and plant when it is learning to use a 

closed-loop BMI system. 

In the case considered in this paper the decoder of the 

closed-loop BMI system transforms the firing rate of an 

ensemble of neurons from motor cortex, ��, into the position 

of a computer cursor � � �����. Here �� � ��	, ��, … �
��, 

where �� is the firing rate of cell � and � is the total number 

of neurons used by the decoder. These firing rates are 

generated by the brain based on its inputs: the desired 

position and the sensory feedback information, i.e. actuator’s 

position. Therefore, 

�� � ����, ��, (1) 

where � is a set of parameters that change as the brain is 

learning to control the BMI system. 

The internal model �� is equivalent to a feedforward 

controller, and is coupled with a feedback controller as 

shown in Fig. 1. The internal model generates the ensemble 

firing rates that will lead to the targeted position whereas the 

feedback controller compensates for errors in the internal 

model.  The motivation and description of each part of this 

model is included in the next two subsections. 

B. Feedback Controller 

We can think of the BMI learning process as an iterative 

optimization algorithm that minimize the error distance  �, 

i.e. the distance between the target and the output position, 

which is given by: 

� � �� � ��� (2) 

The classical way of solving this problem is by updating 

the parameters of the system based on the gradient of the 

error distance with respect to the parameters. Unfortunately, 

we cannot model the brain’s learning process in such a way 
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because that will imply that the brain knows the external 

transformation �. An alternative method is to use an error-

descent optimization algorithm like the one presented in [9]. 

This error descent algorithm uses the output’s change 

produced by small random changes in the parameters to 

estimate the gradient. This approach seems suitable for this 

problem since the neuronal firing rate is a noisy process.  

We used the error-descent algorithm as a feedback 

controller that reduces the error distance and compensates 

for the errors in the internal model. This algorithm works as 

follows: a small and random perturbation �� is added to the 

feedback signal  ���� and the error distance (2) is calculated 

before and after the perturbation �� is added. These error 

distances are denoted by �� and ��� respectively. As shown 

in [9], we update the feedback signal using the update rule 

given by: 

����  �  ����  � Δ���� 

Δ���� �  �  ���� � ����� 
(3) 

where      is a small positive constant. Since numerous cells 

are involved in the model, but a single error measurement is 

available, the update rule (3) does not guarantee that the 

change in feedback goes in the right direction for a given 

cell at a given update step. However, the algorithm 

statistically leads to error descent over the whole population. 

Although, this feedback controller is capable of reducing the 

error, by itself it does not provide a long term learning 

mechanism. For this reason an adaptive feedforward model 

is necessary.  

C. Adaptive Internal Model  

As mentioned before, the internal model predicts the 

firing rates that should lead to the desired position. 

Therefore the firing rates produced by the internal model 

depend on the target position  � and are given by the 

transformation: 

���� � !����, (4) 

where � is a set of parameters of the internal model. In 

theory, any transformation !� can be used as the internal 

model. In this paper, as in [10], we choose an affine 

transformation given by: 

����  �  " � � #��. (5) 

Here  � � $", #��%, where #�� is a vector whose components are 

the baseline firing rates of each neuron and  "  is a matrix 

whose rows are the weights used for modulation of the firing 

rates of each individual neuron.  

The parameters adapt as the brain learns the inverse model 

of the external system. As first suggested by Kawato [6], the 

feedback signal is used to update the internal model as it is 

representative of the internal model’s error. We update the 

parameters in such a way that the feed-forward contribution 

of the firing rates, ����, change in the same direction as the 

feedback update. Indeed, this direction is the one for which 

the error is reduced. An update rule that satisfies this 

condition is given by: 

" � " � & Δ����  
�'
||�||

 

#�� � #��  �  & Δ���� 

(6) 

where &  is the learning speed. Besides reducing the error, if 

a perfect inverse model is reached, this update leads to zero 

error hence zero feedback, and zero update of the internal 

model’s parameters. Step by step, the inverse model is built 

by small increments in the parameter space resulting in 

decreasing error. It should be noted that although we chose 

to use a linear internal model, the same scheme can be 

applied to virtually any internal model. 

III. SIMULATION 

Closed-loop BMI experiments were simulated using the 

system previously described. We used a linear decoder for 

the simulation, i.e.:  

� � ��� (7) 

where � is a 2-by-N matrix converting the firing rates into 

the 2-dimensional position of the BMI-controlled cursor. In 

our simulations, a number  � � 10 cells was used. Initial 

parameters  " and #�� of simulated cells were chosen 

randomly. The task to be performed by the simulated closed-

loop BMI involved reaches to peripheral targets from a 

center position, then returning to the center. Targets were 

held for at most   +  time samples. A trial was successful if 

the target was reached before this maximal duration, in 

which case a new target was presented. Otherwise, a new 

target was presented after  +  samples. These simulations 

are used for the numerical analysis portion of this paper. For 

further information on the learning model and its validation 

see [11]. 

IV. ANALYSIS 

In this section we analyze the BMI learning model 

introduced in the previous sections. As mentioned in [7], it is 

important to study stability and convergence of the neural 

model in order to verify that its properties match the 

properties of the neural system under study.  To study the 

 
 

Fig. 1.  The brain is modeled as an adaptive system with two 

components: a feedback controller and a feedforward controller that 

represents the inverse internal model of the external device. 
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stability and convergence, we study input-output properties, 

as well as evidence that supports the convergence of the 

state to an inverse model. However, the state convergence 

properties of the model depend on a series of intrinsic 

parameters.  In the last subsection, global sensitivity analysis 

is used to study this dependence. 

A. Input-Output Behavior 

Cauwenberghs in [9] proved that the error-descent 

optimization algorithm decreases the error, given by (2),  to 

the optimal solution, provided that the perturbation 

magnitude |��| is small compared to the absolute value of the 

gradient error function that we are trying to minimize and 

that     is positive and small. He also showed that the 

algorithm performs gradient descent on average with 

convergence rate  , �   -�, given that components of the 

perturbation vector �� are uncorrelated and with variance -�. 

This means that the error-descent algorithm, viewed as a 

feedback controller, is capable of reaching any input target. 

The required reaching time depends on the initial conditions 

and parameters of the system.  

Since the feedback controller in our BMI learning model is 

coupled with an internal model, Cauwenberghs’ global 

convergence result, mentioned above, cannot be directly 

applied to our model. Fortunately, it is easy to show that for 

our internal model and learning rule the internal model 

contribution to the firing rates equals ���� �  ���� � 2& Δ����. 

This implies that the overall neural signal update rule is 

given by: 

�� � �� � ��/ 

��/ � �1 � 2&�Δ���� 

� ��1 � 2&� 0��� � ��1��. 
(8) 

It follows that as with the original error-descent algorithm, 

the model performs gradient descent with respect to �� on 

average. 

This result implies that output ��3� � �����3�� tends to  �  

as  4 tends to infinity, where  4  is a learning epoch. 

However, this does not imply that the state of the system, i.e. 

 " , converges to a stable solution. In particular we want to 

know if the state "�3�  converges to an inverse of  �  as  4  

tends to infinity. This would mean that our learning model 

indeed builds an inverse model of the decoder. 

B. Convergence of the State to an Inverse Model  

If the open loop controller is capable of learning the 

inverse model of the decoder, then  �"�3�  5 6  as  4 5 ∞, 

provided that the input targets span the two dimensional 

space. To prove convergence in quadratic mean we need to 

show that  8�3� � 89:�"�3� � 6:; 5 0  as  4 5 ∞. Ideally, 

we would like to find a closed-form expression of 8�3� and 

prove its convergence under certain conditions on the 

parameters. However, it is not straightforward to derive this 

closed-form expression. Therefore, we must resort to 

numerical analysis. 

Monte Carlo analysis was used to find estimates for 8�3� 

given the configuration parameters  < � $ , &, -�%, of the 

model, where -�  is the variance of the perturbation 

components. Note that |��| depends directly on -� since the 

components of ��  are independent, zero-mean, and 

uniformly distributed random variables. Fig. 2(a) shows the 

results of the analysis for the configuration  < �
$0.8,0.8,0.01%. The blue line is the estimation and the red 

lines mark the confidence interval with coverage of 0.99. For 

this particular configuration, and many others,  8�3� 

converges to zero. In addition the variance of the sequences 

tends to zero as  4  increases, as shown by the confidence 

interval converging with the estimation in Fig. 2 (a). To 

verify that the state stabilizes, we estimate the expected 

value of "�3�, shown in Fig. 2 (b), and verify that it reaches 

steady state. This proves that the model is capable of 

converging to one of the decoder’s inverses. 

 

C. Factor Mapping: Regionalized Sensitivity Analysis  

In sensitivity analysis, the factor mapping setting is 

associated with mapping portions of the output space to the 

factor (i.e. parameter) space. Here we apply this setting to 

study how the convergent behavior maps to the model’s 

parameters     ,  &  and -�. The methods used in this section 

can be found in [12]. 

We used Monte Carlo filtering (MCF) to separate the 

convergent and divergent portions of our sample space. The 

parameters where sampled randomly with a uniform 

distribution with range >0,10? for     and  &  and >0,0.07? for 

-�. These ranges were chosen in a way that the 

unconditional probability of convergence  A is near 0.5, in 

 
(a) 

 
(b) 

Fig. 2. Monte Carlo analysis of the learning model with parameters 

 < � $0.8,0.8,0.01%. We used 25 replicas of the process, with random 

initial conditions and random input sequences. (a)Estimation of 8�3� 

and confidence interval with a 0.99  coverage. (b) Mean  "  

coefficients. 
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this case  A � 0.413. This was done to have enough samples 

in both the convergent and divergent subsets, and in that way 

avoid lack of statistical power. After MCF, Regionalized 

Sensitivity Analysis (RSA) is used to identify what 

parameters are more relevant to the state convergence. 

First we computed the probability distribution of each 

parameter conditioned on the convergent and divergent 

subsets. We compared the conditional cumulative 

distributions functions (CDF) obtained for each parameter 

graphically and by computing the Smirnov test statistic 

F � GHA�I�J|K� � I�J|KL��, where  J  is the parameter and 

K and KL denote the convergent and divergent subsets 

respectively. These comparisons are shown in Fig. 3(a). 

High values of  F  indicate that the parameter is important 

for the state convergence.  From the Smirnov statistic we see 

that while all the parameters have a significant effect on the 

convergence,  -� has a greater impact (i.e. much greater 

coefficient). From the curve of the convergent set’s CDF, we 

can find the regions of the parameter space that have a 

greater probability of convergence. Convergence is mostly 

obtained for small values of the parameters, indicated by the 

steep slope of the convergent set’s CDF in small regions. 

We also studied the parameters’ interaction mechanisms 

that produce state convergence. To do that, we found the 

correlation coefficient for the different pairs and plot the 

bidimensional projection of the pairs with high correlation, 

Fig 3(b). For the pair � , &�  the correlation coefficient was 

not significantly high. For the other pairs, the curves have a 

negative correlation suggesting that the overall interaction 

mechanism between two parameters is a sum or a product. 

Since the curves resemble hyperboles it is plausible that the 

condition for state convergence has the form of J	J� M
NOPGQRPQ, for parameters �J	, J��  S $ � , -��, �&, -��%. 

V. DISCUSSION 

This paper presented a model for simulating the learning 

process in a closed-loop BMI experiment. The adaptive 

scheme presented uses random perturbations of the firing 

rates to update an internal model. This makes it a 

biologically plausible model since the neuronal firing rates 

are inherently noisy. The analysis showed that the model is 

capable of learning an internal inverse model and that the 

ability of doing so depends greatly on the magnitude of the 

random changes. These results agree with the properties of 

real BMI systems. First, BMI performance is believed to 

depend on the ability of changing the neural mapping, which 

in our model is equivalent to adapting the internal model. 

Second, as mentioned in [13], fluctuations of the neural 

activity can be one of the mechanisms used to learn a new 

mapping and in our model the ability of having detailed 

neural fluctuation depends directly on the magnitude of the 

random changes, making it a very influential parameter. Our 

learning model could be improved with a more realistic 

internal model transformation, and by adding the delay in 

the feedback loop to account for delays in sensory afferents.  

The model presented is useful to study BMI and predict 

its closed-loop behavior. This may help us to design new 

“optimal” decoders that would maximize the learning speed 

rather than the offline prediction power. 

REFERENCES 

[1] Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, 

D.M., Dimitrov, D., Patil, P.G., Henriquez, C.S., and Nicolelis, 

M.A.L. “Learning to control brain-machine interface for reaching, 

grasping by primates,” PloS Biol., vol. 1, pp. 193–208, 2003. 

[2] Velliste, M., Perel, S.,  Spalding, M.C.,  Whitford, A.S., and Schwartz. 

A.B. “Cortical control of a prosthetic arm for self-feeding.” Nature, 

vol. 453 pp. 1098–1101, 2008. 

[3] Kim S.-P., Sanchez J.C., Rao Y.N., Erdogmus D., Carmena J.M., 

Lebedev M.A., Nicolelis M.A.L., and Principe J.C. A comparison of 

optimal MIMO linear and nonlinear models for brain-machine 

interfaces. Journal of Neural Engineering 3, pp. 145-161., 2006 

[4] Eberhard E. Fetz, “Volitional control of neural activity: implications 

for brain–computer interfaces”, J Physiol March 2007 579:571-579 

[5] Doya, K.   Kimura, H.   Kawato, M., “Neural mechanisms of learning 

and control”. Control Systems Magazine, IEEE, Vol. 21,  Issue: 4   

2001 

[6] M. Kawato, K. Furukawa and R. Suzuki, “A hierarchical neural 

network model for control and learning of voluntary movement”, Biol. 

Cybern., vol. 57, pp. 169-185, 1987 

[7] Tin C., Poon C.S., Internal models in sensorimotor integration: 

perspectives from adaptive control theory. J Neural Eng 2 2005 

[8] D. Wolpert, R. Miall, and M. Kawato, “Internal models in the 

cerebellum,” Trends in Cognitive Science, vol. 2, pp. 338–347, 1998. 

[9] G. Cauwenberghs, “A fast stochastic error-descent algorithm for 

supervised learning and optimization,” in Adv. Neural Information 

Processing Systems (NIPS*92), vol. vol. 5, 1993, pp. pp. 244–251. 

[10] U. Rokni, A. Richardson, E. Bizzi, and H. Seung, “Motor learning 

with unstable neural representations,” Neuron, vol. 54, no. 4, pp. 653–

666, 2007. 

[11] Heliot R., Ganguly K., Carmena J.M. “Modeling and experimental 

validation of the learning process during closed-loop BMI operation”, 

International Conference on Machine Learning and Cybernetics 

(ICMLC), Hebei, China, 2009 (to appear) 

[12] A. Saltelli, et al., “Global Sensitivity Analysis. The Primer,” John 

Wiley and Sons., 2008, chap. 5. 

[13] X. Xie and H. S. Seung, “Learning in neural networks by 

reinforcement of irregular spiking,” Physical Review E, vol. 69, no. 4, 

pp. 1–10, 2004. 

(a) 

                  
(b) 

 

Fig. 3.  Monte Carlo Filtering (a) CDF of the parameters conditioned 

to convergence, F is the Smirnov statistic; (b) Bidimensional 

projection of the different pairs of parameters (NN is the correlation 

coefficient). 
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