
 
 

 

  

Abstract—To understand the function of a brain region, e.g., 
hippocampus, it is necessary to model its input-output 
property.   Such a model can serve as the computational basis 
of the development of cortical prostheses restoring the 
transformation of population neural activities performed by 
the brain region.  We formulate a sparse generalized Laguerre-
Volterra model (SGLVM) for the multiple-input, multiple-
output (MIMO) transformation of spike trains.  A SGLVM 
consists of a set of feedforward Laguerre-Volterra kernels, a 
feedback Laguerre-Volterra kernel, and a probit link function.  
The sparse model representation involving only significant self 
and cross terms is achieved through statistical model selection 
and cross-validation methods.  The SGLVM is applied 
successfully to the hippocampal CA3-CA1 population 
dynamics.   

I. INTRODUCTION 
o understand the function of a brain region such as 

the hippocampus, it is necessary to model its input-
output properties.  The model should be able to predict 
accurately the output signal based on the on-going input 
signal and provide mechanistic insights into the systems 
nonlinear dynamics [1]. 

 
Volterra model is one of the best-known systems 

identification methods that has numerous successful 
applications on the modeling of physiological systems.  It 
has many favorable properties in representing the systems 
nonlinear dynamics.  However, Volterra model, at least in its 
original form, is not optimal for the point-process (spike) 
input-output characteristics of neural population dynamics.  
In this paper, we modify/extend  the Volterra model based 
on the principal physiological mechanisms/processes of the 
spiking neuron and formulate a sparse generalized Laguerre-
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Volterra modeling (SGLVM) framework to better account 
for those characteristics.  The SGLVM model is applied 
successfully to the hippocampal CA3-CA1 spike train 
transformations and may serve as the computational basis of 
the development of hippocampal prostheses. 

 

H

K

σ
Gaussian Noise

Threshold

Feedback Kernel

Feedforward Kernels

input spike trains

output spike train

x
1

yu w

a

ε

θ

MISO Model of Spiking Neuron

x
2

x
3

x
4

K

Gaussian error function

Feedback Kernel

Feedforward Kernels

input spike trains

firing probabilty

x
1

y

u

a

Equivalent Generalized Volterra Model

x
2

x
3

x
4

preceding output spikes

y-
H

p
f

A

B

 
 

Fig. 1.  Multiple-input single-output (MISO) spiking neuron model.  A: 
structure of a MISO model.  D: MISO model is equivalent to a generalized 
Volterra model with a probit link function..  

II. METHODOLOGY 
According to the Volterra modeling theory, a nonlinear 

time-invariant system with finite memory can be expressed 
in terms of the relation between progressively higher order 
temporal properties of the input events and the system 
output, and represented as kernels of a functional power 
series.  Theoretically, a Volterra model (VM) can capture 
completely the input-output relation of such a system, given 
sufficiently high model order.  In practice, due to the 
estimation difficulty associated with the requirement of 
forbiddingly long input-output dataset, VMs are often 
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truncated to the low orders and the contributions of the 
higher-order terms are combined with the intrinsic system 
noise into a Gaussian random noise.  In the case of a 2nd-
order, N-input-single-output system: 
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y(t) is the output; x(t) is the input; k0, k1, k2s, and k2x are 

the zeroth-order, 1st-order, 2nd-order self, and 2nd-order cross 
kernels, respectively.  M is the system memory.  ε(t) is a 
Gaussian random noise.  The kernel coefficients then can be 
estimated using the least-squares method.   

 
However, neurons generate spikes as output.  Spikes are 

stochastic, discrete, fixed-amplitude events generated by a 
thresholding mechanism, and thus can be expressed as 1s 
without loss of generality (non-spiking events are expressed 
as 0s).  They can be considered as realizations of a Bernoulli 
process with an underlying probability intensity function.  
The Gaussian noise assumption in Equation 1 is clearly 
inappropriate for such a probability distribution.  To solve 
this problem, we modify the VM by adding a pre-threshold 
noise and a threshold function.  In such a scheme, the output 
will be either 1s or 0s by definition, and the probability of 
generating 1s (crossing the threshold) is determined by the 
inputs and the noise term. 

 
It is also well-known that the spiking activity of a neuron 

can be profoundly influenced by its previous spikes besides 
the input spikes it receives.  Indeed, a neuron can generate 
drastically different spiking patterns with different types of 
spike-triggered dynamics given the same input pattern.  To 
capture this characteristic, it is necessary to add an "auto-
regressive" component that specifically models the output-
dependent dynamics (the Volterra series in Equation 1 can 
be considered as a “moving-average” expression of the 
inputs).  In fact, this is particularly important for a spiking 
neuron model since the latter generates 1-or-0 outputs that 
can not be deterministically derived from the input events.  
Not including such an auto-regressive component would not 
only mix the feedforward dynamics with the feedback 
dynamics and thus complicate the physiological 
interpretation, but also cause less accurate model by losing 
information about the exact timings of the previous output 
spikes.  To address this issue, we further add a feedback 
term that transforms the preceding output spikes to a 
continuous hidden variable a that can be interpreted as 
spike-triggered after-potential.  The resulting model is 

shown in Figure 1A and can be expressed as:  
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The feedforward dynamics is represented by a hidden 

variable u that is expressed as a 2nd-order, N-input-single-
output Volterra model as in Equation 1 (by replacing y with 
u).  The feedback dynamics is denoted by another hidden 
variable a that is expressed as a 1st-order single-input-single-
output Volterra model (Equation 4).  ε is the pre-threshold 
noise that is assumed to be Gaussian distributed with a 
standard deviation of σ; w is the hidden variable (pre-
threshold potential) that generates spikes when crossing the 
threshold θ. 
  

One of the major challenges in Volterra modeling is the 
large number of open coefficients to be estimated.  The total 
number of open parameters increases exponentially with 
input dimension and model order.  The model involves 2-D 
(time and index of the input neurons) input and 2nd-order 
nonlinearity.  The number of parameters easily becomes 
unwieldy even in a moderately large model.  To solve this 
problem, we employ (1) Laguerre expansion of Volterra 
kernel (LEV), and (2) statistical model selection techniques.   

 
Using LEV, both feedforward kernels k and feedback 

kernel h are expanded with orthonormal Laguerre basis 
functions b [2].  With input and output spike trains x and y 
convolved with b: 
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Equations 1 and 4 can be rewritten into: 
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 c are the sought Laguerre expansion coefficients of k and 
h.  Since the number of basis functions (L) can be made 
much smaller than the memory length (M), the number of 
open parameters is greatly reduced by the expansion. 

 
With recorded input and output spike trains x and y, 

model parameters can be estimated using maximum-
likelihood method.  The negative log-likelihood function L 
can be expressed as: 
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where T  is the data length, and P is the probability of 
generating the recorded output y: 
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Since ε is assumed to be Gaussian, the conditional firing 

probability intensity function Pf (the conditional probability 
of generating a spike at time t) can be calculated with the 
Gaussian error function (integral of Gaussian function) erf: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−=

σ
θ

2
)()(5.05.0)( tatuerftPf        (11) 

where ∫ −=
s t dte

π
serf

0

22)(           (12) 

 
P at time t then can be calculated as: 
 

⎩
⎨
⎧

=−
=

=
0)(1
1)(

)(
ywhentp
ywhentp

tP
f

f        (13) 

 
Model coefficients c then can be estimated by minimizing 

the negative log-likelihood function L: 
 

))(min(arg~ cLc =               (14) 
 
This model turns out to be mathematically equivalent to a 

Generalized Linear Model (GLM) with y as dependent 
variable, the convolutions of Laguerre basis functions with 
inputs x (v in Equation 7 and 8) as well as the products of 
the these convolutions (vv in Equation 7) as independent 
variables, and c as unknown parameters (Fig. 1B).  The 
GLM link function is the probit function (inverse 
cumulative distribution function of the normal distribution) 
since the latter is defined as: 

 
)12(2)( 1 −= − yerfyprobit          (15) 

 
Given this important equivalence, model coefficients c 

and their covariance matrices can be estimated using the 
iterative re-weighted least-squares method, the standard 
algorithm for fitting GLMs.  For the same reason, this model 
can be termed as Generalized Laguerre-Volterra Model 
(GLVM).  Since u, a and n are dimensionless variables, 
without loss of generality, both θ and σ can be set to unity 
value; only c are estimated.   

 
Theoretically, the aforedescribed method can be used to 

estimate arbitrary multiple-input models.  However, in 
practice, model complexity often needs to be further reduced 
by selecting an optimal subset of model coefficients.  This 
procedure, termed model selection, is particularly necessary 
and desirable in modeling the population neural dynamics 
for the following reasons: first, neurons are often sparsely 
connected.  In a brain region, an output neuron is seldom 
affected by all the input neurons.  The full Volterra kernel 
model as describe in Equation 1 is not the most efficient or 
interpretable way of representing such system.  More 
importantly, the number of coefficients to be estimated in a 
full Volterra kernel model grows rapidly with the number of 
inputs and the model order.  Estimation of such model, 
especially the higher order ones, can easily become 
unwieldy even with the Laguerre expansion.  Furthermore, a 
model with too many open coefficients tends to fit the noise 
instead of the signal in the training data.  An overfitting 
model would result in poor generalization of the training 
data and bad predictions of the novel data.  Consequently, 
interpretation of such model becomes problematic.  To solve 
this problem, the following statistical model selection 
method is applied to the configuration and estimation of the 
GLVMs. 

 
Before model selection, the input-output dataset is 

partitioned into two subsets.  One subset (training set) is 
used for model estimation.  The other subset (testing set) is 
retained for validation of the results from the training set.  
Results from the two subsets are called in-sample and out-
of-sample results, respectively.  The model starts from 
zeroth order.  A zeroth order model only contains c0, which 
is equivalent to the standard deviation of the pre-threshold 
Gaussian noise.  It essentially model the system output as a 
homogeneous Poisson process (constant firing probability 
intensity).  The minimal negative likelihood (L) of zeroth 
order model provides a starting point for the model 
selection.  In the second step, feedback terms (as described 
by Equation 8) is added to the model.  Output spike train is 
predicted by the preceding output spikes without 
considering any input.  If L decreases in both of the in-
sample and out-of-sample results, the feedback term is then 
added into the model.  In the third step, inputs are selected 
using a forward step-wise selection procedure.  Self-terms 
involving first-order and second-order kernels are 
constructed for all inputs.  With the zeroth order term and 
feedback term (if selected in the previous step) included in 
the model, the values of L with and without each input are 
calculated.  The input that decreases L the most is then 
added into the model.  With the newly selected input 
included into the model, selection is then performed on the 
remaining inputs.  Repeating this procedure, inputs are 
sequentially added into the model.  The selection is stopped 
when the out-of-sample L starts to increase (in-sample L 
always decreases with more terms included in the model), 
indicating the occurrence of overfitting.  In the fourth step, 
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cross-terms involving cross-kernel are selected.  Cross-terms 
are first constructed for every unique pairs of the selected 
inputs and then selected following the aforedescribed 
forward step-wise and cross-validation procedures.  The 
resulting model represents the system with sparse model 
coefficients corresponding only to the significant model 
terms and thus can be termed as a sparse GLVM (SGLVM). 

III. RESULTS 
SGLVM is applied on the hippocampal CA3-CA1 

population dynamics in rats performing a memory-
dependent behavior task, i.e., delayed-nonmatch-to-sample 
task [3].   CA3 and CA1 spike trains are simultaneously 
recorded during the task and constitute the MIMO datasets 
for the model. 
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Fig. 2.  Selecting significant inputs and cross-terms of a MISO model.  A: 
The model starts from zeroth order (first data points).  Feedback kernels is 
then selected and included in the model (second data points).  Six inputs 
(first and second order self-terms) and one cross-term are selected based on 
cross-validation.  Open circles: in-sample results; Closed circles: out-of-
sample results; Top: absolute negative log-likelihood (L); Bottom: 
normalized L.  B: Left, selection path of the inputs; Right: selecting path of 
the cross-terms.  The cross-terms (# = 15) are constructed with the selected 
inputs (# = 6) only. 

 
MISO SGLVMs are obtained using the aforedescribed 

estimation and selection method.  Figure 2 illustrates the 
selection of inputs and cross-terms of a SGLVM.  The 
model starts from zeroth order.  The feedback term is then 
added into the model since it decreases L in both training 
and testing datasets (Fig. 2A).  With the zeroth order and 
feedback terms, inputs are added into the model in a forward 
step-wise fashion (Fig. 2B).  The in-sample L decreases 
monotonically as more terms added into the model.  
However, the out-of-sample L starts to increase from the 7th 
input.  Six inputs are then selected based on this cross-
validation results (Fig. 2A).  With the 6 selected inputs, 15 
cross-terms in total are then constructed and added into the 

model (Fig. 2C).  Again, in-sample L decreases 
monotonically; out-of-sample L starts to increase from the 
2nd cross-term – so only one cross-term is selected by cross-
validation (Fig. 2A).  It is evident that the model selection 
procedure greatly reduces the model complexity and thus 
allows reliable estimation of the model.   

 
The estimated model is validated using out-of-sample 

Kolmogorov-Smirnov (KS) test based on the time-rescaling 
theorem [4].  The summation of synaptic potential u and 
after-potential a is calculated using the input/output spike 
trains of the testing set, and the kernels estimated from the 
training set.  Firing probability intensity Pf is then calculated 
using the Gaussian error function.  The KS plot shows that 
all data points are within the 95% confidence bound.   

 
 

IV. DISCUSSION 
We have formulated a SGLVM framework for the 

population neural dynamics and applied it successfully to 
the modeling of hippocampal CA3-CA1 spike train 
transformation.  The model inherits the capability of 
modeling nonlinear dynamic systems from the ordinary 
Volterra model while having several critical 
modifications/improvements made specific for the modeling 
of neural population activity. 

 
The model described in this paper can be used to build 

hippocampal prostheses.  For example, to replace a CA1 cell 
field, the prosthetic device has to reinstate the output signal 
(e.g., CA1 spikes) based on the signals recorded in an 
upstream region (e.g., CA3).  A prosthesis including our 
CA3-CA1 model would be used in the following manner.  
First, stimulating electrodes would be placed in the 
molecular layer of the subiculum.  CA3 neurons would 
provide input to the model.  Thus, spike output of the model 
would provide the output of simulated CA1 to the 
subiculum, the output target of CA1.  This by-passes the 
damaged CA1 area, and restores CA3-to-subiculum 
nonlinear dynamics, and thus, the “near-normal” nonlinear 
dynamic output of the hippocampus. 
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