
  

  

Abstract—A stochastic state point-process adaptive filter was 
used to track the temporal evolution of several simulated 
nonlinear dynamical systems. The estimated Laguerre 
coefficients and Laguerre poles were used to reconstruct the 
feedforward and feedback kernels in the system. Simulations 
showed that the proposed method could track the actual 
underlying changes of nonlinear kernels using spike input and 
spike output information alone. The estimated models also 
converge quickly to the actual models after abrupt step changes 
in kernels. The proposed method can be used to track the 
functional input-output properties of neural systems as a result 
of learning, changes in context, aging or other factors in the 
natural flow of behavioral events. 

I. INTRODUCTION 
HE brain comprehends information and initiates actions 
through the ensemble spiking activity of its neurons. 

Biological processes underlying spike transformations across 
brain regions, including synaptic transmission, dendritic 
integration, and spike generation, are highly nonlinear 
dynamical processes and are often nonstationary. For 
example, it is well established that certain forms of synaptic 
plasticity, such as long-term potentiation (LTP) and long-
term depression (LTD), occur in response to specific input 
patterns, and plasticity is manifested as a change in input-
output functions that can be viewed as a system 
nonstationarity. Quantitative studies of how such functions 
of information transmission across brain regions evolve 
during behavior are required in order to understand the 
brain. This paper proposes a nonstationary modeling 
framework for the multiple-spike activity propagations 
between brain regions. 

We have identified hippocampal CA3-CA1 spike train 
transformations in well-trained animals performing a 
delayed-nonmatch-to-sample (DNMS) task with multiple-
input, multiple-output (MIMO) models [1]. The models we 
have developed can stochastically predict CA1 output spike 
trains based on CA3 input spike trains. In this first step 
toward modeling the hippocampus, the experimental data are 
collected from well-trained animals who achieved 
asymptotic performance. That is, they performed the 
behavioral task nearly identically each time so the 
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underlying input-output transformations are nearly 
stationary. This implies that we can apply one time-invariant 
model to describe CA3-CA1 nonlinear dynamics. In the 
second step of hippocampal modeling, we tried to identify, 
in the learning animals, the hippocampal CA3-CA1 
functional connections that are expected to change over 
time, and so the kernels describing the input-output 
dynamics also would be expected to change over time. We 
seek to identify such time-varying properties of hippocampal 
nonlinear dynamics by extending our model to be 
nonstationary using adaptive signal processing techniques.  

In system identification applications, an adaptive filter is 
used to estimate a model that represents the best fit to an 
unknown plant. For example, the steepest descent algorithm 
using a deterministic gradient was applied to nonstationary 
systems [2]. However, optimal learning rates are related to 
the covariance matrix of variables, which are usually 
unknown, and are time-varying in nonstationary systems. 
Stochastic gradient algorithms [3], such as the normalized 
least-mean-squares (NLMS) [4] are most commonly used for 
nonstationary linear systems. They utilize an estimation of 
input power to adjust learning rates at each time step. 

The standard Kalman filter, has also been applied to linear 
systems [4, 5]. Wu et al. applied the Kalman filter to control 
cursor motion [5]. Various modified Kalman filters have 
also been derived. For example, the switching Kalman filter 
proposed by Wu et al. [6] is a weighted piecewise-linear 
model. Inputs used are the firing rates of neurons [7]. 

Gao et al. have investigated the particle filters for brain-
machine interfaces (BMI) decoding with a variety of 
nonlinear models [8]. However, a particle filter increases 
computational costs significantly. Neural Network is a 
popular choice [4, 9, 10] but it is sometimes hard to interpret 
the multiple hidden layers and nodes in networks. 
Marmarelis proposed the expansion of time-varying 
coefficients onto basis functions to characterize time-varying 
nonlinear systems [11]. Krieger et al. applied his technique 
to study the kernel changes in potentiation induced by rapid 
stimulations [12]. Chon and colleagues [13] extended this 
projection method to develop time-varying principal 
dynamic modes (PDM) [14] for the study of single-input, 
single output (SISO) time–varying nonlinear dynamic 
systems. They predetermined the number of Walsh or 
Legendre basis functions used. However, the optimal 
number of basis functions depends on the number of 
occurrences in parameter changes, which is unknown in 
time.  

Another type of neural model examined the effects of 
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multiple external cues on individual neurons by tracking 
model parameters in the point process framework. Eden et 
al. proposed the stochastic state point process filter (SSPPF) 
[15]. The SSPPF updates model coefficients in proportion to 
the difference between the occurrence of an actual spike and 
the estimated probability of its occurrence. Single unit spike 
activities are regarded as the most relevant neural signals 
and will serve as the focus of investigation here. Therefore, 
SSPPF is applied to our nonlinear dynamical modeling 
framework to track nonstationary systems.   

II. METHODS 

A. Configuration of the Generalized Volterra Model 
(GVM) 
A MIMO system can be decomposed into a series of 

multiple-input, single-output (MISO) systems as shown in 
Fig. 1 [16]. The MISO models are identical in structure and 
each module projects to a separate output. Each MISO 
model has physiologically-plausible components which can 
be described by the following equations:  
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The input and output spike trains are denoted by x and y 
respectively. The hidden variable w represents the “pre-
threshold membrane potential” of the output neuron. The 
“pre-threshold membrane potential” is the summation of the 
“synaptic potential” u, the output spike-triggered “after-
potential” a, and a Gaussian white noise input ε with 
standard deviation σ. The noise term models both the 
intrinsic noise of the output neuron and contributions from 
unobserved inputs. When w crosses the threshold θ, an 
output spike is generated and a feedback after-potential a is 
triggered and then added to w. Consider the ith order Volterra 
kernel ki where N is the number of inputs and Mk is the finite 
memory of the kernel. Then, the “synaptic potential” u can 
be expressed as 
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The feedback variable a can be expressed as 
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where h is the linear feedback kernel and Mh is the memory 
of the feedback process.  The spike-triggered feedback 
captures the effects of ion channels such as calcium-
activated potassium channels and also captures GABAergic 
feedback in the output firing patterns. 

 
Fig. 1 MISO model structure 

B. Laguerre Expansion of GVM: Generalized Laguerre-
Volterra Model (GLVM) 
The Laguerre expansion of the Volterra kernel (LEV) is 

used to reduce the number of open parameters to be 
estimated and, more importantly, to produce real-time 
prediction by separating the system’s nonlinearity from the 
system’s dynamics [16]. Using the LEV technique, both 
feedforward kernels k and feedback kernel h are expanded 
through orthonormal Laguerre basis functions b with input 
and output spike trains x and y convolved with b, such that 
the convolved products v are expressed as   )(
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The convolved functions v include the temporal dynamics.  
Another advantage of the Laguerre expansions is that the 
convolutions are generated in real time. Let αn (0 < αn< 1) be 
the pole of the Laguerre basis functions for input n. The 
Laguerre basis functions can be obtained by inverse Z-
transform of transfer function of the Laguerre filter  
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A Laguerre basis function of j-th order will have j-1 
intercepts with the x-axis. The decay time of the built-in 
exponential of the Laguerre basis functions increases when 
the value of the Laguerre pole increases. v can also be 
computed iteratively at each time t [17]. Let 
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where A1 = I + αn I-; A2 = αn I + I-; [ ]'001 …=3A ; I is 
an LxL identity matrix and I-  is a lower shift matrix.  

C. Estimation of Parameters 
 Given recorded input and output spike trains x and y, u 

and a can be readily calculated based on the present values 
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of v and the model coefficients in real-time. The estimated 
firing probability P(t) is calculated using the error function: 
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Without the loss of generality, θ and σ can be set to 0 and 1 
respectively [1]. The parameters to be estimated are the 
Laguerre coefficients c and Laguerre poles α. Using the 
stochastic state point process filtering algorithm (SSPPF) 
[15], the parameter vector C(t) and its covariance matrix 
W(t) are updated iteratively at each time step t: 
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where Q is a small coefficient noise covariance matrix. 
During adaptive parameter estimation, the gradient and the 
Hessian required in (10) and (11) can be also generated in 
real-time. The derivatives with respect to c are given as the 
products of v calculated in (8), such as   
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The derivatives with respect to the Laguerre poles can be 
calculated immediately based on the current input xn(t) and 
the derivatives evaluated at previous time step t-1. Let 

']/)(/)([/)( )()(
1

)(
n

n
Ln

n
n

n tvtvt ααα ∂∂∂∂=∂∂ …V , 

.
1

1

32

)(

)(
)(

2

)(

(t)A(t)VI

1)(tV
)(tV

A
(t)V

A1

n

n

nn

n

n

n

n

n

x
α

α
αα

−
−−

−+
∂

−∂
=

∂
∂

−

 ( 12 ) 

Let ']/)(/)([/)( 2)(22)(
1

22)(2
n

n
Ln

n
n

n tvtvt ααα ∂∂∂∂=∂∂ …V , 

( ) .12 - 

1
2

1
 

3
2
3

2
)(

)(

2

)(2

22

)(2

(t)A
(t)V

I

)(tV)(tV
A

(t)V
A1

nn
n

n

n

n

n

n

n

n

x−

− −−
∂

∂
∂

−∂
+

∂
−∂

=
∂

∂

α
α

ααα
 ( 13 ) 

Since αn  is bounded between 0 and 1, we define a variable fn 
as αn = 0.5 + 0.5 erf(fn), such that parameter vector C 
composed of unrestrained parameters c and fn. Other sigmoid 
functions can be also used to set the upper bound and the 
lower bound of αn.  

After observation of actual output spike train and 
prediction of firing probability in (9), the coefficient 

covariance matrix W is first estimated in (10) using the 
gradient and the Hessian calculated. Then W acts as the 
learning rate for the parameter estimations in (11). The 
estimated Laguerre coefficients c~  and the  Laguerre poles 
α�  are used to reconstruct the feedforward and feedback 
kernels [1]. 

D. Reconstruction of Kernels 
The final coefficients ĉ  and σ̂ can be obtained from 

estimated Laguerre expansion coefficients, c~ , through a 
normalization procedure by taking )~/(~ˆ 0

)()( ccc nn −= θ , 
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Similar by, a linear feedback kernel can be reconstructed as 
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 The normalized kernels provide an intuitive 
nonparametric representation of the system input-output 
nonlinear dynamics. For instance, ),(ˆ

21
),(

2
21 ττnn

xk  represents 
the joint nonlinear effect of pairs of spikes with one spike 
from neuron n1 and one spike from neuron n2 [16]. 

III. RESULTS 

A. Simulation of Time-Varying Neural System 
Simulations of multiple inputs were conducted [18]. By 

looking at the simulated point process inputs and outputs 
only, the changes in the underlying nonlinearities were 
identified. Since the Laguerre pole is also optimized, it 
allows us to track the kernel with unknown time window. An 
example of simulations is shown in Fig. 2. The system 
simulated was a 2-input first-order system, the kernels of the 
first input and the second input had LTP- and LTD-like 
changes respectively. After the "short-term potentiation" 
reached its peak magnitude, it decayed with a time constant 
of 6 minutes in Fig. 2a . Fig. 2b demonstrated the 
simultaneous tracking of a long-term depression-like time-
varying kernel of the second input, which decayed with a 
time constant of 6 minutes. 

Bin size of the spike trains was 2 ms and the kernels were 
tracked at every bin. The Laguerre coefficients c and 
Laguerre poles αn were initialized at 0 and 0.5 respectively 
and they converged to the optimal values with respect to the 
actual input kernels during the simulation. The estimated 
model converged quickly to the actual system after abrupt 
change as shown in Fig. 2a. Other simulations also 
demonstrated that the nonstationary model is capable of 
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tracking concurrent changes in multiple kernels with 
unknown time windows. 
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Fig. 2 Peak magnitude of the first order feedforward kernel in a) LTP and b) 
LTD. Interval between successive estimations plotted is 20 s.  

IV. DISCUSSION 
Simulations of high order systems and time-varying 

neural systems show that the proposed method can track the 
actual underlying changes of nonlinear kernels by looking at 
spike inputs and outputs only. In practice, adaptive modeling 
techniques can be applied to track the time-varying 
dynamics between brain subregions such as hippocampal 
CA3 and CA1 with the MIMO nonlinear model framework 
proposed here. The tracked differences in kernel functions 
can represent differences in the feedback or the feedforward 
connections, or differences in the density of voltage-
dependent ionic channels, among other possibilities. 
Correlations between classes of kernel functions and 
anatomical locations within the hippocampus can be also 
traced. Analyses of cross-kernel evolution can indicate the 
developments of termination patterns in the postsynaptic 
dendritic tree. Large-scale simulations of a larger number of 
inputs and performance comparison with other existing 
adaptive modeling techniques will be conducted to validate 
this proposed nonstationary model. 
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