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Abstract—Early detection of deterioration in hospital patients 

followed by intervention and stabilization can prevent adverse 

events such as a cardiac arrest, unscheduled admission to ICU, 

or death. Patients at step-down units of hospitals tend to have 

their vital signs checked by nursing staff at 4-hourly intervals. 

If an abnormality develops in the period between nurse 

observations, it is likely to lead to an adverse event (which may 

have been preventable). Visensia is a real-time, continuous vital 

sign acquisition system, using data fusion in order to predict 

patient deterioration. Validation trials have shown that the 

system successfully provides early warning of adverse events,  

such as cardiac arrests. We tested the system on lower acuity, 

ambulatory patients in a hospital ward with the vital signs being 

collected using telemetry. In order to optimize processing, we 

have developed an algorithm for deriving the respiration rate of 

the patient from the ECG signal.    

I. INTRODUCTION 

One of the most important actions which could be taken to 

improve patient safety in hospitals is to “identify patients 

who are deteriorating and act early” [1].  Up to 80% of 

ward patients have abnormal physiological parameters in the 

24 h preceding intensive care (ICU) admission [2, 3]. 

Furthermore, retrospective surveys have shown that most 

patients suffering in-hospital cardiac arrests have had 

antecedent abnormal vital signs, often beginning between 6 

and 8 h before the arrest [4-10].  Acutely ill patients (i.e. 

those in Level 2 and upper end of Level 1 in the NHS)  have 

their vital signs (heart rate, breathing rate, oxygen levels, 

temperature and blood pressure) continuously monitored but 

patient monitors generate very high numbers of false alerts 

(e.g. 86% of all alerts were reported to be false in [11]) and 

as a result, nursing staff mostly ignore alarms from the 

monitors. As a result, abnormal vital signs developing in the 

periods between the 4-hourly checks, which may be 

precursors of adverse events, are often missed. Failure to 

recognize or act on these may contribute to emergency ICU 

admissions and increased hospital mortality [12].  The 

consequences are costly, in terms of patient outcomes, time 

and resources [13].  There is therefore an unmet clinical need 

for a robust and reliable system of generating alarms from 

continuous monitoring of at-risk patients in hospital.  

 

A. The Visensia system 

In order to address this clinical need, a real-time vital sign 

data fusion system was developed, Visensia (formerly 

BioSignTM), based on a model of normality learnt from a 

dataset of vital signs acquired from hundreds of acutely-ill 

hospital patients [13,14]. The model of normality is an 

approximation to the unconditional probability density 

function (pdf) of the normal vital sign data in the training set. 

This model is stored in Visensia and used to evaluate the 

 
 

 probability that the set of vital signs acquired second-by-

second from the patient being monitored can be considered 

to be normal. The standard Visensia software is connected to 

the bedside patient monitors via a standard interface. The 

vital sign values are continuously displayed on the patient 

monitor and the probability of “normality” is expressed in 

terms of a single value, the Visensia Safety Index (VSI),   

which may also be displayed on the monitor or on the nurses‟ 

central station. Whenever the VSI is over a clinically 

validated threshold, an alert is generated, which could be 

used to trigger the intervention of a Medical Emergency 

Team or Rapid Response Team. An overview of the system 

can be found in [13] and [14].   

The Visensia system was evaluated in three different 

validation trials with a total of 1660 patiens [15]. In a study 

at the University of Pittsburg Medical Centre, in a 24-bed 

Step-Down Unit (SDU), the system reduced the percentage 

of patients with prolonged physiological derangement from 

18% to 5% (as a result of early intervention by the nursing 

staff). As a further consequence of this early intervention, 

there has been no unexpected cardiac arrest on the SDU in 

the last 18 months [16]. All of this has been achieved with a 

false alert rate of just one every 4.4 days.  

 

B. Wireless monitoring 

Data fusion has been shown to provide early warning of 

patient deterioration at the bedside. The next step is to apply 

the technique to less critically ill, ambulatory patients who 

may be monitored using telemetry.  These patients are 

currently unmonitored.  There are many challenges 

associated with operating in such a context: fewer vital signs 

are recorded and it is likely that there will be more missing 

data and increased artefact due to patient movement. In 

addition, a number of technical challenges need to be 

overcome: hospital Wi-Fi coverage needs to be 

comprehensive, and equipment battery life must be such that 

the nurses do not have to replace batteries too often. Other 

issues to be considered are: patient acceptability of the ECG 

and pulse oximetry sensors, and integration of the system 

within nursing practice (since blood pressure and 

temperature values need to be entered manually).  

Section II of this paper presents the results of a pilot study 

where the Visensia telemetry system was tested on 

ambulatory patients on Level 1 wards in the Oxford John 

Radcliffe hospital. The aim of this study was to identify and 

address the challenges that the wireless environment adds to 

the system; at this first stage, we did not assess the 

performance of the VSI in identifying patient deterioration.  

In addition to testing the system on ambulatory patients, we 

developed an algorithm which calculates the patient‟s 

breathing rate from their ECG signal.   
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The algorithm, presented in section III of the paper, will be 

incorporated into the telemetry system so that a robust 

estimate of the breathing rate can be obtained without any 

extra instrumentation connected to the patient. 

 

 

Fig. 1. Patient PDA (right) and Central Station (left) of the Visensia 

telemetry system.  

II. PILOT CLINICAL STUDY 

A. Study design 

We recruited 18 adult patients from the Gerontology, 

Surgical Emergency Unit (SEU), and Acute Stroke Unit 

(ASU). We included patients “stepping down” from the 

Intensive Care Unit (ICU) and who were sufficiently mobile 

that they could leave their bed space unaided.  We excluded 

patients fitted with a pace-maker or suffering from Atrial 

Fibrillation (AF). All patients taking part were conscious and 

gave their informed consent before taking part in the study. 

They were then connected to a multi-parameter monitor, in 

the form of a hand-held PDA, which was attached to a 

bedside dock when the patients were in their bed and carried 

around with them when they left the bedside. In the original 

system, the PDA had a battery life of 3 hours but was 

charging while on the bedside dock; as a result, we 

monitored patients for up to 4 h.  (Monitoring time has since 

been increased to 24 h). The following signals were 

collected: 

1) Three leads of continuous ECG. 

2) A single, continuous, electrical impedance pneumo-

graphy signal recorded via a chest band, from which 

respiration rate can be calculated (used to validate the 

breathing rate algorithms).  

3) Arterial oxygen saturation (SpO2) measurements from 

pulse-oximetry (via a finger probe.) 

These three parameters were measured continuously and 

transmitted to the PDA via Bluetooth and to the central 

station PC via the secure hospital Wi-Fi network. Figure 1 

shows a picture of the patient PDA and central station PC 

where vital sign measurements and VSI are continuously 

displayed. To enable Bluetooth transmission, all sensors 

were connected with Bluetooth relay boxes which were 

either attached to the sensor as a box or worn as a band.  The 

range of Bluetooth was 10 m and relay boxes were 

associated to the relevant PDA using a pin code and a unique 

mac address to avoid possible security problems. Figure 2 

shows the Bluetooth relay band connected to the SpO2 

sensor. The ECG sensors are also shown being held by the 

subject.   

In addition, regular measurements of blood pressure and 

temperature were entered by the nurse in the patient PDA. 

The patient PDA also displayed the VSI although in the 

current study no use was made of this information.  In this 

initial study, only one multi-parameter monitor (PDA) was 

available for testing so only one patient could be monitored 

at any one time. The patients taking part in the study were 

encouraged to continue their normal daily routine in the ward 

while connected to the equipment so that situations in which 

the communication between the sensors and PDA or between 

the PDA and the central station PC might be compromised, 

could be identified.   

 

 

 

 

 

 

 

 

Fig.  2. Telemetry-based vital-sign sensors. The Bluetooth relay 

band is connected to the SpO2 sensor and transmits the pulse-

oximetry signal to the PDA 

 

B. Signal Acquisition  

Before starting the trial, the research nurse coordinating the 

study did two surveys of the hospital area while connected to 

the equipment. Wi-Fi signal strength and quality were 

subsequently reviewed and this identified some areas where 

the signal was either weak or non-existent (e.g., the hospital 

lifts, the parking area outside the hospital and the doctor‟s 

assessment room on one of the wards). The signal was found 

to be of good quality 93% of the time.   

During this initial 18-patient study, the ECG signal was 

acquired 97% of the time while the SpO2 signal was received 

88% of the time. The reason is that the SpO2 finger probe is 

more sensitive to movement as the patients use their hands in 

their daily routine. The validation respiration signal from the 

chest band  was of adequate strength 96% of the time.  

However, instrumentation problems led to a useful 

impedance signal only being recorded from 4 patients (for a 

total of 11 hours). The data from those 4 patients were used 

for testing and validating the ECG-derived respiration 

algorithm, presented in the next section. 

Figure 3 shows an example of the 3 vital sign parameters 

acquired via telemetry for an ambulatory patient monitored 

in the Gerontology ward for a period of 3 hours.  

A number of elderly patients refused to take part in the study 

because they felt that the chest band measuring the 

impedance signal would cause discomfort.  This highlighted 

the need to develop an algorithm which would calculate the 

breathing rate from the ECG signal. 

 

III ECG-DERIVED RESPIRATION 

Obtaining a reliable measure of a patient‟s breathing rate 
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Fig. 3. The three vital sign parameters acquired from an ambulatory 

patient via the telemetry system. The top plot shows the Heart Rate 

(HR), the middle one the SpO2 signal and the bottom one the 

derived respiratory signal, all averaged over 1 minute intervals.  

 

from the ECG would be useful in this context for a number 

of reasons: firstly, we would not need to connect extra 

instrumentation to the patient; secondly, since the ECG 

waveform is displayed at a central station, the processing 

required to extract breathing rate could be centralized, 

allowing more flexibility to the choice of monitor attached to 

a particular patient. 

The physiological mechanism which our algorithm is based 

on is Respiratory Sinus Arrhythmia (RSA), the cyclic 

variation in heart rate which is associated with respiration. 

RSA is reflected in the variation in the time between 

successive R-wave peaks, the R-R intervals. Plotting the 

value of the R-R interval against the time at which the 

interval ends produces a waveform which is synchronous 

with respiration.  Since heart rate accelerates during 

inspiration, the times of the troughs of the R-R time-series 

correspond to the start of each respiration cycle. The signal 

obtained from the R-R time-series, assumed to be 

synchronous with respiration, is called the RSA-derived 

respiration signal, or RSA-DR.  

RSA, as expressed in the R-R time series, has been used 

extensively in the past as the basis of algorithms for deriving 

respiration rate [17-18], with encouraging results. While past 

methods have been designed for, and validated on, data from 

subjects who lay supine during data acquisition, our 

algorithm is designed for, and tested on, ambulatory patients. 

It is a well-known fact that biomedical sensors are sensitive 

to subject movement; this needs to be addressed by our 

algorithm. In addition, while many past algorithms relied on 

manual inspections and retrospective processing, our system 

is designed for incorporation into a real-time telemetry 

monitoring system, all processing is, thus, fully automated. 

 

A. The algorithm 

1) Obtaining the RSA-DR 

The first step requires the R-R time-series to be obtained 

from the series of beat-to-beat timing intervals. The R-wave 

peaks are identified using the Hamilton-Tompkins QRS 

detection algorithm [19]. The intervals between R-wave 

peaks give the R-R time-series. 

Unexpected deviations due to sensor or motion artefacts 

were corrected firstly by ectopics removal using a 20% 

deviation criterion and then by wavelet de-trending in order 

to remove any irrelevant baseline drifts.    

In the next step of our algorithm we cubic-spline interpolated 

the R-R time series and resampled at 4Hz.  The frequency 

component related to respiration was then isolated by band-

pass filtering the RR-time series in the 0.1-0.5 Hz band. 

 2) Reference respiratory signal 

The reference signal used was an electrical impedance 

pneumography signal, indicative of the changes in thorax 

resistivity during breathing. The signal was wavelet-de-

noised before being processed by a peak-detection algorithm 

for calculating the minute-by-minute breathing rate.   

Figure 4 shows a plot of the RSA-DR derived from the ECG 

and the corresponding reference respiratory signal obtained 

from an ambulatory patient.  

Fig.  4. Reference respiration signal (upper trace) and RSA-DR 

(lower trace). The signals have been scaled to permit visual 

comparison, hence no vertical axis scales are provided.  There is an 

approximate correspondence between the peaks of the two traces. 

 

3) Peak Detection 

In order to derive breathing rate from the ECG signal, a peak 

detection algorithm was applied to the RSA-DR time series, 

based on setting a threshold on the amplitude of the signal. 

Since the same peak detection algorithm is used on the de-

noised reference respiration signal in order to validate the 

method, the threshold was initially set at the value 

minimizing the error between the number of troughs detected 

in the RSA-DR time series and the number of peaks in the 

reference respiration signal, over all of the telemetry vital 

sign data. The breathing rate was calculated for a number of 

overlapping 60 second windows, with the start of each 

window offset by 10 seconds from the start of the previous 

window.  The number of breaths (peaks) was calculated for 

the RSA-DR and reference signals, which were then 

normalized to give a „per-minute‟ breathing rate.    

 

B. Results  

Figure 5 shows the RSA-DR-estimated breathing rate over a 

50-minute period on an ambulatory patient superimposed on 

the breathing rate calculated from the reference signal. The 

average breathing rate calculated over this period from the 

reference signal is 17.2 bpm whereas from the RSA-DR it is 

18.5 bpm.  

Figure 6 shows a scatter plot of the RSA-DR estimates 

(horizontal axis) against the reference signal values (vertical 

axis) for all four patients used for validating the ECG-
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Fig. 5.  RSA-DR estimated breathing rate (solid line) over a 50-

minute period on an ambulatory patient superimposed on the 

breathing rate calculated from the reference signal (dashed line).  

Fig.  6. Scatter plot of RSA-DR (vertical axis) against breathing 

rate calculated from the reference signal (horizontal axis) for all 

patients, with 10% error interval lines also shown.  

derived respiration algorithm. 72% of minute-by-minute 

estimates are within a 10% error interval. 

 

 

CONCLUSIONS AND FUTURE WORK 

We tested a real-time, telemetry-based continuous electronic 

physiological monitoring system, Visensia, on lower-acuity 

ambulatory patients. The Wi-Fi signal was of sufficient 

strength 93% of the time. We acquired ECG, SpO2 and 

respiration signals 97, 88 and 96% of the time, respectively. 

Initially, we could only monitor patients for a maximum of 4 

hours at a time. We have now further developed the 

telemetry equipment to allow 24 h monitoring. The 

robustness and reliability of the system in a wireless 

environment will next be evaluated for simultaneous, 

multiple patient monitoring.  

We also developed an algorithm for obtaining breathing rate 

from the ECG signal for ambulatory patients. We validated 

the algorithm on data from four patients and found that it 

correctly estimated the breathing rate within a 10% error 

band 72% of the time. The algorithm will be validated 

against a larger range of patients and integrated into the 

system so that no extra instrumentation is required in order to 

measure breathing rate. This will enable us to apply our data 

fusion algorithms to three continuously monitored 

parameters (heart rate, SpO2 and breathing rate), regularly 

augmented by intermittent measurements of blood pressure 

and core temperature.   
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