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Abstract— Robustness in signal processing is crucial for the
purpose of reliably interpreting physiological features from
noisy data in biomedical applications. We present a robust
algorithm based on the reformulation of a well-known spatial
filtering and feature extraction algorithm named Common
Spatial Patterns (CSP). We cast the problem of learning CSP into
a probabilistic framework, which allows us to gain insights into
the algorithm. To address the overfitting problem inherent in
CSP, we propose an expectation-maximization (EM) algorithm
for learning robust CSP using from a Student-t distribution.
The efficacy of the proposed robust algorithm is validated with
both simulated and real EEG data.

I. INTRODUCTION

The Common Spatial Patterns (CSP) algorithm (also

known as Fukunaga-Koontz transform in the machine learn-

ing field) was first proposed by Fukunaga and Koontz as

an extension of Principal Component Analysis (PCA) for

feature extraction [1], and since then it has been widely used

in many fields, including digit and face recognition, target

recognition, and identification of abnormal EEG patterns [2],

[3], [4]. Notably, CSP has been successfully employed in

brain-computer interfaces (BCIs) as a spatial filtering algo-

rithm, as evidenced by recent international BCI competitions.

Given two classes of multivariable data, CSP aims to find

a linearly transformed space where a good separability be-

tween the two classes can be attained. Mathematically, CSP

is formulated as an optimization problem that maximizes

the ratio of variance between one class of data and the

other. On the face of it, CSP is viewed as a discriminative

method for supervised learning without using probabilistic

formulation. However, CSP is known to have three draw-

backs. First, when the dimension of the observations (e.g.,

multi-channel EEG/MEG signals in BCIs) is high, CSP is

prone to overfitting. Second, although CSP is a second-order

statistics based algorithm, it is not robust to outliers in the

data. Third, when CSP is used as a feature extraction method

in BCI applications, the number of CSP components in the

classification stage is often chosen in an ad-hoc manner. To

our best knowledge, so far there has been no systematic

analysis of CSP that deeply addresses the above issues.

The contribution of our paper is twofold. First, we provide

a generative interpretation of CSP in that it can be equiv-

alently derived as the maximum likelihood (ML) estimate
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of an underlying probability model. Mapping an existing

algorithm to a probability model is desirable from both

theoretical and practical viewpoints. From a statistical per-

spective, this allows us to examine and understand when

the algorithm performs well or poorly. From a practical

standpoint, associating a probability model with an algorithm

leaves open the possibility of improving the algorithm by

modifying the structure of the model. Second, we extend

CSP to address the overfitting problem. Specifically, we use

a Student-t distribution to model the data, thereby making

the model more robust to outliers. A new expectation-

maximization (EM) algorithm is developed for learning the

robust CSP.

II. METHODS

A. The Common Spatial Patterns Algorithm

Let us introduce the CSP algorithm in the context of

EEG signal processing. Consider two classes of EEG signals

X(i) ∈ RC×Mi(i = 1, 2), where C and Mi denote the num-

ber of channels and sampled points, respectively. Without

loss of generality, hereafter the signal in each channel is as-

sumed to have zero mean. The spatial covariances for the two

classes can then be computed as R̂(i) = 1
Mi

X(i)X(i)T (i =
1, 2). The task of CSP is to find a linear transform by

which the ratio of variance between the two classes can be

maximized. Mathematically, this can be formulated as the

following optimization problem

max
w

w
T R̂(1)

w

w
T R̂(2)

w

s.t. ||w|| = 1 (1)

The solution can be obtained as the eigenvectors of the

following generalized eigenvalue decomposition

R̂(1)W = R̂(2)WΛ (2)

where Λ is a diagonal matrix with eigenvalues. Equivalently,

the eigenvectors are given by joint diagonalization of the

covariance matrices R̂(1) and R̂(2)

WT R̂(i)W = Λ(i)(i = 1, 2) (3)

B. A Generative View of CSP

We present a generative view of CSP, which casts the

solution as an ML estimate from a probability model. The

probability model is a mixture of two constrained factor

analysis models [5], with each modeling one class of pattern:

X
(i)
k = AZ

(i)
k + Ξ

(i)
k

Z
(i)
k ∼ N (0,Λ(i)),Ξ

(i)
k ∼ N (0,Ψ(i))(i = 1, 2) (4)
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where X
(i)
k (i = 1, 2) is the observation vector at the kth

sample for class i. Z(i) ∈ RS×Mi are the factors. The

additive noise Ξ(i) ∈ RC×Mi are the specific factors. A ∈
RC×S is the factor loading matrix (also known as the mixing

matrix in the blind source separation literature) that contains

spatial patterns, which is identical for the two classes. As a

result, the factors and the mixing matrix are defined uniquely

up to scaling and permutation indeterminancies, without the

rotational indeterminancy as in the case of classical factor

analysis. Matrices Λ(1),Λ(2),Ψ(1),Ψ(2) are all diagonal,

implying that the factor variables are uncorrelated with each

other, and that the observed variables are uncorrelated given

the factors. The connection between the model (4) and CSP

is revealed by the following theorem.

Theorem 1: The transformation matrix W in the CSP

algorithm is equal to Â−T , where Â is the ML estimate

of A in model (4) with two additional assumptions: (i) the

additive noise vanishes to zero; (ii) A is a square matrix.

A sketchy proof of the theorem is presented in the ap-

pendix. In practice, the above two assumptions are hardly

satisfied, which exactly make CSP suffer from overfitting.

Another problem remains to be addressed is the sensitivity

of CSP to outliers in the observed data, due to its underlying

Gaussian assumption. These issues will be addressed below.

C. Robust CSP

The Student-t distribution is known to be able to be

represented as the infinite mixture of Gaussian distributions

that have the same mean but different variances controlled

by a scaling variable [6]:

St(x|µ,Λ, ν) =

∫

∞

0

N (x|µ, u−1Λ)Gam(u|
ν

2
,
ν

2
)du (5)

where St(x|µ,Λ, ν) denotes the multivariate Student-t

distribution with mean µ, scale matrix Λ, and degrees of

freedom (df) ν. Gam(u|ν2 ,
ν
2 ) denotes the Gamma distribu-

tion defined as Gam(u|α, β) = 1
Γ(α)β

αuα−1e−βu.

The Student-t distribution provides a generalization of

Gaussian distribution in that the additional parameter ν can

be used to adjust the thickness of the tail in order to account

for outliers. For each class, we model both the additive noise

and the factors by Student-t distributions with the same df,

as the marginal distribution of the observed variables in this

case would still be a Student-t distribution.1 Consequently,

the robust probability model is given hierarchically by

X
(i)
k = AZ

(i)
k + Ξ

(i)
k

Z
(i)
k ∼ N (0, u

(i)−1
k Λ(i)),Ξ

(i)
k ∼ N (0, u

(i)−1
k Ψ(i))

u
(i)
k ∼ Gam(

ν(i)

2
,
ν(i)

2
) (i = 1, 2) (6)

The ML estimates of the model parameters Θ =
{A,Λ(i),Ψ(i), ν(i)}2

i=1 cannot be obtained in a closed form,

we therefore resort to the EM algorithm [7] for iterative

1The primary objective is to use the Student-t distribution to model the
observed data that may lessen the unfavorable influence of the outliers in
the data.

estimation. Due to space limit, we only give the final form

of the EM algorithm by skipping step-by-step derivations.
E-step: Calculating the posterior distribution of the hidden

variables {Z(i),u(i)} given X(i) (i = 1, 2) yields

p(Z(i)
,u

(i)|X(i)) = p(u(i)|X(i))p(Z(i)|u(i)
, X

(i))

p(u(i)|X(i)) =

Mi
Y

k=1

Gam(u
(i)
k |α

(i)
k , β

(i)
k ), α

(i)
k =

Mi + ν(i)

2

β
(i)
k =

1

2
[X

(i)T
k [AΛ(i)

A
T + Ψ(i)]−1

X
(i)
k + ν

(i)]

p(Z(i)|u(i)
,X

(i)) =

Mi
Y

k=1

N (Z
(i)
k |µ

(i)
k ,Σ

(i)
k )

Σ
(i)
k = u

(i)−1
k [AT Ψ(i)−1

A+ Λ(i)−1]−1

µ
(i)
k = u

(i)
k Σ

(i)
k A

T Ψ(i)−1
X

(i)
k

M-step: Maximizing the expectation of the complete log-
likelihood with respect to the hidden variables yields

Λ(i) =
1

Mi

Mi
X

k=1

E[u
(i)
k ]diag{C(i)

k }

Ψ(i) =
1

Mi

Mi
X

k=1

E[u
(i)
k ] ×

diag{X(i)
k X

(i)T
k −X

(i)
k µ

(i)T
k A

T −Aµ
(i)
k X

(i)T
k + AC

(i)
k A

T }

aj = (

2
X

i=1

Mi
X

k=1

E[u
(i)
k ]ψ

(i)−1
j X

(i)
jk µ

(i)
k )(

2
X

i=1

Mi
X

k=1

E[u
(i)
k ]ψ

(i)−1
j C

(i)
k )−1

where C
(i)
k = Σ

(i)
k +µ

(i)
k µ

(i)T
k , aj is the jth row of A, ψ

(i)
j

is the jth diagonal element of Ψ(i), X
(i)
jk is the jth element

of X
(i)
k , diag{S} denotes a diagonal matrix with diagonal

entries taken from the main diagonal of matrix S. Note that

A and Φi are coupled in the M-step iterations, hence must

be solved alternately. In addition, ν(i) is obtained by solving

the following nonlinear equation

1 + ln(
ν(i)

2
) − ̥(

ν(i)

2
) +

1

Mi

Mi
∑

k=1

(

E[ln(u
(i)
k )] − E[u

(i)
k ]

)

= 0

where E[u
(i)
k ] =

α
(i)
k

β
(i)
k

,E[ln(u
(i)
k )] = ̥(α

(i)
k ) − ln(β

(i)
k ), and

̥ denotes the digamma function.

We refer to the above EM algorithm for learning the prob-

abilistic model (6) the robust CSP algorithm. In M-step, we

see that the posterior mean of the scaling variable E[u
(i)
k ] acts

as a weighting coefficient for each data point. The weighting

coefficients are optimized so that the effect of outliers will

be suppressed on the parameter estimation. Instead of taking

binary values of 0 or 1, the continous-valued weighting

coefficient reflects the confidence of excluding a data point

as an outlier: the smaller the weighting coefficient, the more

likely a data point is an outlier.

III. RESULTS

A. Results on Synthetic Data

First, we compare the performance of the robust CSP algo-

rithm and the standard CSP algorithm on the reconstruction

accuracy of the mixing matrix via Monte Carlo simulations.
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Fig. 1. Comparison of Amari indices between CSP and robust CSP at
different signal-to-noise ratios (SNR).

In each run, two sets of 10 mutually uncorrelated factors are

generated, with each set corresponding to one class. Each

factor comprises 1, 000 data points that are independently

and identically Gaussian distributed with zero mean. The

standard deviations of the 10 factors for one class are in

descending order from 10 to 1, while for the other class the

standard deviations are ascending from 1 to 10. A 20 × 10
mixing matrix is also randomly generated, with each entry

uniformly distributed within [0, 1]. Additive white Gaussian

noise is simulated with varying SNR 20 ∼ 0 dB.

The noisy mixture signals are presented to both algo-

rithms. For robust CSP, the dimension of the factors is

assumed to be known (The issue of learning the factor

dimension is discussed in Section IV). Since CSP specifically

addresses the square mixing case (Theorem 1), we select

the 10 columns that correspond to the 5 largest and the 5
smallest eigenvalues to form the estimated mixing matrix

Â. The Amari index is used as a measure of the closeness

of Â and the true mixing matrix A, which is invariant to

permutation and scaling of the columns of A and Â:

d(Â, A) =
1

2S





S
∑

i=1

∑S

j=1 |bij |

maxj |bij |
+

S
∑

j=1

∑S

i=1 |bij |

maxi |bij |
− 2S





where bij = ((ATA)−1AT Â)ij . The Amari indices aver-

aged over 50 runs are plotted in Fig. 1. With no surprise,

the index increases with increasing SNR for both methods.

However, the robust CSP outperforms CSP in that the Amari

index substantially reduces under the same SNR. Next, we

test the performance of robust CSP when data are contam-

inated with outliers. The basic setting of the simulation is

similar to the former case, except that: (i) for demonstration

purpose, the simulation consists of only one Monte Carlo

run; (ii) The mixing matrix of size 45 × 6 is generated

from a real head model, with one column representing the

spatial pattern of a cortical patch over the foot representation

area, which is the pattern of interest (POI). The ratio of

standard deviations between the first and the second class

for the corresponding factor is set to 10:1. (iii) The SNR

is fixed to 20 dB. The additive noise is a mixture of two

Gaussians: one has a standard deviation of 1, while the other

one has a standard deviation of 500 to simulate the impulsive

noise. We consider two cases when the percentage of the

impulse noise in the data are 1% and 5%, respectively. For

comparison we visualize the spatial patterns (i.e., columns in

the mixing matrix) associated with the POI that are computed
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Fig. 2. (a) True spatial pattern (SP) of the POI; (b) Spatial patterns
computed from CSP and robust CSP under different noise conditions.
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Fig. 3. Spatial patterns (SP) for left- and right-hand motor imageries
computed by CSP and robust CSP from real EEG signals.

by CSP and robust CSP. The spatial pattern is selected to be

the column in A that has the maximum ratio of variance

Λ
(1)
jj /Λ

(2)
jj . It was found in Fig. 2 that robust CSP in both

cases performs fairly well even when the percentage of the

impulse noise reaches 5%, while CSP fails in both cases in

revealing the true spatial pattern.

B. Results on Real EEG Data

We also demonstrate the efficacy of the robust CSP

algorithm in tackling the outliers in real EEG recordings. Due

to space limit, we only present the result on one dataset for

the purpose of illustration. The EEG data here were recorded

from a healthy female subject participating in a real-time

BCI experiment, in which the task is to control the vertical

movement (upward or downward) of a cursor on the screen

via imagination of her left or right hand movement. The 32-

channel EEG recordings (sampling rate 256 Hz) consisting

of 20 trials (10 trials per class) in a single session is used

for present analysis. Each trial lasts 2 s, during which the

subject was performing the motor imagery task. Each class of

EEG signals are band-pass filtered between 8 Hz and 30 Hz

before being presented to CSP and robust CSP for analysis.

0 5 10 15 20
−6

−4

−2

0

2

4

6

Time(s)

EE
G 

Si
gn

al

2 3 4 5
0

1

2

Time(s)

E[
u(ri

gh
t) ]

Fig. 4. The waveform of one EEG channel that was contaminated by strong
outliers around 4 s. The inset figure highlights the weighting coefficients
over the time period when outliers occur.
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For robust CSP, the number of factors is determined by cross-

validation.

The spatial pattern associated with left-hand motor im-

agery is selected to be the column in A that has the

maximum ratio of variance Λ
(left)
jj /Λ

(right)
jj . Similar criterion

is used for the right-hand spatial pattern. The resultant spatial

patterns are shown in Fig. 3. The difference between the

results of robust CSP and CSP lies primarily in the spatial

pattern of right-hand motor imagery: in robust CSP the

spatial pattern focuses on the true left-hand representation

area (as expected from physiology [8]); whereas the spatial

pattern found by CSP incorrectly centers on the frontal

region. To understand why CSP fails to find the correct

right-hand spatial pattern in this case, we closely inspected

the EEG signal. It was found that during certain period

(3.6 ∼ 4 s) when the task was right-hand motor imagery,

one channel of the recorded EEG signal was contaminated

by outliers, as shown in Fig. 4. By observing the weighting

coefficients E[u(i)], we see that these outliers actually have

negligible influence on the performance of robust CSP. For

this subject, the BCI classification accuracies (using Fisher

discriminant analysis on a separate test set of 20 trials) yield

85% for robust CSP and 65% for CSP, indicating a significant

improvement in performance.

IV. DISCUSSION AND FUTURE WORK

The proposed probability model can be viewed as a

generative counterpart of the discriminative model in [11].

However, the performance of the algorithm therein highly

depends on the preprocessing of the data. For example, since

mu-rhythms recorded by channels covering the motor cortex

in scalp surface are typically rather weak in the case of motor

imagery, the performance in [11] would degrade significantly

without data prewhitening. By contrast, the ML solution

of our probabilistic generative model is unaffected by the

scaling of the coordinates in the data.

Our paper also serves as a basis for exploring various

extensions. First, the proposed robust generative model can

be extended to the state-space form to account for the

temporal dynamics of data, as similarly derived in [9], [10]

for the CSP counterpart. Second, the ML framework enables

us to use unlabelled data for augmenting the labelled training

data to perform semi-supervised learning in classification.

Third, the extension of the current model to the multi-

class case is straightforward. Fourth, an important question

unanswered in this paper is the automatic determination of

the number of factors in the model. A promising approach

is Bayesian inference, in which hyperparameters can be

introduced to control the number of factors in learning [12].

All the above directions are currently under investigation. We

also plan to employ the algorithm to explore the differences

in spatial patterns of brain activities at different stages of

general anesthesia.
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APPENDIX: PROOF OF THEOREM 1

In the noiseless and square mixing matrix setup, the log-
likelihood of the observed variables is

L=

2
X

i=1

Mi
X

k=1

p(X
(i)
k |A,Λ(1)

,Λ(2))

= −
2

X

i=1

Mi

2
[C ln(2π) + ln |R(i)| + Tr((R(i))−1

R̂
(i))]

= −
2

X

i=1

Mi

2
[Tr(R(i))−1

R̂
(i)) − ln |(R(i))−1

R̂
(i)| − C] + Const

= −
2

X

i=1

[DKL(R̂(i)‖R(i))] + Const

where R(i) = AΛ(i)AT , and DKL(S1‖S2) denotes the Kullback-
Leibler (KL) divergence between two Gaussian distributions with
covariance matrices S1 and S2, respectively. The last equality
follows from the definition of KL divergence.

Because KL divergence is invariant to invertible linear transfor-
mation and the Pythagorean decomposition holds as the involved
distributions are all Gaussian, the log-likelihood is rewritten as

L = −
2

X

i=1

DKL(A
−1
R̂

(i)
A

−T ‖Λ(i)) + Const

= −
2

X

i=1

»

DKL(A
−1
R̂

(i)
A

−T ‖diag(A−1
R̂

(i)
A

−T ))

+DKL(diag{A−1
R̂

(i)
A

−T }‖Λ(i))

–

+ Const

Λ(1) and Λ(2) are fully parameterized diagonal matrices, thus
regardless of A the second KL divergence in the bracket can always
be made exactly to zero. The first KL divergence will be zero if

and only if A−1R̂(i)AT is a diagonal matrix. In other words, the

log-likelihood is maximized if and only if R̂(1) and R̂(2) are jointly
diagonalized by A−T . �
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