
  

 

Abstract— In this paper we introduce an adaptive rule based 

QRS detection algorithm using the Hilbert transform 

(adHQRS) for fetal magnetocardiography processing. Hilbert 

transform is used to combine multiple channel measurements 

and the adaptive rule based decision process is used to eliminate 

spurious beats. The algorithm has been tested with a large 

number of datasets and promising results were obtained. 

I. INTRODUCTION 

HE fetal heart experiences a substantial amount of 

growth during early stages of pregnancy. Using 

ultrasound, a heartbeat can be detected as early as 5-6 weeks 

of gestation. Detection and analysis of fetal cardiac signals 

are essential components of fetal health monitoring and have 

various applications, e.g. fetal monitoring during labor [1], 

identification of fetal state [2,3], monitoring of fetal 

arrhythmia[4], and automatic detection of fetal movement 

[5]. As the heart develops changes occur in the morphology 

and amplitude of the fetal cardiac signal (FCS). Also, 

electrophysiological recordings of FCS are ten-fold weaker 

in amplitude than maternal heart signal which makes the 

detection a challenging task.  

Conventionally, Doppler sonography and fetal 

electrocardiogram (fECG) are used to observe the fetal heart. 

However, maternal and fetal movements decrease the 

sensitivity of ultrasound systems and fECG may require the 

repositioning of the electrodes. fECG signal strength 

decreases after about 27-28 weeks of gestation and cannot be 

captured reliably between 30 and 34 weeks because of the 

insulating effects caused by vernix caseosa. Doppler heart 

rate monitors can provide only average information about the 

heart rate, and hence it is not possible to understand the fine 

details such as firing of the sinus, conduction velocities, etc. 

from the heart rate data. With the advent of bio-magnetic 

recordings, using high sensitive sensors, it is possible to 

measure the fetal magneto-cardiogram (fMCG) successfully 

starting from 14 weeks of gestation.  
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A unique instrument called SARA (Fig. 1) an acronym for 

SQUID Array for Reproductive Assessment, has been 

devised and installed at the Department of Obstetrics and 

Gynecology, University of Arkansas for Medical Sciences. 

SARA has 151 channel array of SQUID gradiometers with 

diameter of 2 cm and baseline of 8 cm and can capture 

maternal cardiac signal, fetal cardiac signal, fetal brain signal 

and other biological signals pertinent to fetal development.  

The sensors are distributed evenly on a concave surface and 

spaced approximately 3cm apart. They cover an area greater 

than 850cm
2 

spanning the maternal abdomen longitudinally 

from the symphysis pubis to the uterine fundus and a similar 

distance laterally. SARA is completely non-invasive and 

provides a higher signal to noise ratio than fetal 

electrocardiogram (fECG). Compared to SARA, single 

channel SQUID systems, ultrasound and other fetal 

monitoring systems require repositioning of the sensors to 

capture FCS during fetal movements. 

With the large spatial distribution of SARA sensors, it is 

possible to develop algorithms that can process multiple 

channel signals to improve signal to noise ratio for FCS. 

However, only the sensors close to the fetal heart record the 

fMCG signal with high signal to noise ratio and different 

sensors obtain fMCG signal with different amplitude and 

polarity. Maternal and fetal movements can also alter the 

fMCG signal amplitude and morphology.  

Generally, heart beat detection is a two step approach. The 

first step involves preprocessing the data using appropriate 

filtering. The second step involves a threshold detection 

scheme to distinguish and identify the R-wave from other 

components of the cardiogram which we call decision step in 

this work. A well designed first step greatly improves the 
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Fig. 1.  Fetal MEG System a) Mother sits on and leans against the 

SARA system. b) Fetus and SQUID sensors. 
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signal to noise ratio and provides a reliable baseline for the 

decision step which is essential to obtain noise free results.  

 Cardiac signal extraction has been studied by other 

researchers.  Hamilton used a rule based system to detect the 

QRS complex [6]. The use of Hilbert transform to detect the 

QRS complex has been attempted by Benitez et al.  [7] and 

Wilson et al. [8]. While Benitez et al. based their approach 

on the single channel ECG, Wilson et al. used the cardiac 

signals from multiple sensors and have shown that Hilbert 

transform can be utilized to combine multiple sensor 

measurements to improve the signal to noise ratio. During 

fetal motion FCS undergoes amplitude changes that result in 

spurious (missed/extra) beats. Though Wilson et al. 

approach identifies the spurious beats this approach does not 

provide methods to correct them.    

In this paper, we introduce the adaptive rule based QRS 

detection algorithm using the Hilbert transform (adHQRS). 

The adHQRS algorithm, similar to the Hilbert approach [8], 

uses the Hilbert transform and multiple sensor information to 

improve the signal to noise ratio. Additionally, it addresses 

the weaknesses of the Hilbert approach by using an adaptive 

threshold and QRS complex decision process. The adHQRS 

algorithm has been tested with 485 fMCG datasets and 

results were compared with the Hilbert approach. 

 

II. METHODOLOGY 

A. Data Collection 

485 datasets from 223 pregnant women between 28 and 

37 weeks of gestation were collected using the SARA 

device. Data were sampled at a rate of 312.5 Hz using a 

bandwidth set for 0-100 Hz. Each recording lasted for 11-30 

minutes depending on maternal comfort. 

 

B. First Stage: Filtering 

The maternal cardiac signal was removed by the 

orthogonal projection technique [9]. The data were band-

pass filtered between 1-60 Hz using a 4
th

 order Butterworth 

digital filter with zero phase distortion. 

A subset of the available channels associated with the fetal 

heart is selected as follows: i) power spectral density of the 

channels is estimated by using the fast Fourier transform 

(Fig. 2). ii) ten channels with highest power at the frequency 

bandwidth between 1 to 60Hz are used for further 

calculations. 

For a real-time function x(t), the Hilbert transform is 

defined as: 
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where P.V. denotes Cauchy Principal Value. In practice, we 

compute h(t) using the „hilbert‟ function in Matlab which 

provides r(n)=x(n)+ih(n),  where t=n/samplefrequency.   

Next, the rate of change of the Hilbert amplitude (RHA), 

Rm,n of the analytic signal rm,n is defined as follows: 
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Where m is the channel number and n is the data point. 

Finally, Rm,n are summed up for the selected ten channels. 
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S, cumulative Hilbert amplitude (cRHA), is always positive.  

C. Second Stage: Decision 

Heart rate is defined in beats per minute (BPM). Decision 

stage takes two input parameters, expected minimum and 

maximum heart rate (EminBPM , EmaxBPM). For a healthy 

fetus this range is usually between 90- 210 bpm. These 

values are converted to minimum R-R interval (EminRR) 

and maximum R-R interval (EmaxRR), respectively. The R-

R values detected in the data that are not in this range are 

defined as outliers. There is a provision for the users to 

provide their own range of values, to deal with 

arrhythmic/bradycardia situations.   

The algorithm involves the following four steps. 

Step 1: Find Global Threshold 

Step 1.1: Multiple threshold values are defined starting 

from Smin = min(S) to Smax=max(S) with 5% step size. 

Step 1.2: Local maxima points (R peaks) above each 

threshold are identified. 

Step 1.3: Time between consecutive local maxima points 

are identified as R-R interval. 

Step 1.4: For each threshold, the number of outlier is 

calculated and the threshold with the minimum outlier is 

assigned as global threshold and used for further processing. 

Step 2: R Peak Detection 

A peak detection algorithm (Fig. 3) with hysteresis 

 
Fig. 2.  Estimated power for channels for the frequency bandwidth 

between 1 to 60Hz. Red dots show channel locations. 
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proportional to the threshold is used.  

Step 2.1:  Starting from the first point above the threshold 

and continuing until a data point which is ten percent below 

the threshold value is found or the end of data is reached, 

search for the maxima as follows:   

Compare amplitudes of each successive value. If it is 

larger than the current maximum, designate this as the 

maximum value.  The maximum points are taken as R time 

points. A matrix V with time and amplitude of R peaks is 

generated for further processing. 

Step 3: Missed Beats 

Outliers are classified into two groups; missed beats and 

extra beats. Missed beats are the R-R intervals above 

EmaxRR indicating the global threshold value must be 

lowered for detection. Extra beats are the R-R intervals 

below EminRR indicating the possible presence of noise. 

The algorithm first checks for the missed beats. 

Step 3.1: For a missed beat calculate the local average 

amplitude of the previous 10 R peaks. (If 10 R peaks are not 

available, use the average amplitude of all identified R 

peaks) 

Step 3.2: Adjust the threshold to the half of the local 

average amplitude and process the data between these two R 

points and find the maximum points above threshold. 

Step 3.3: If new peaks are found, update vector V (R peak 

index) with newly found peaks. 

Step 4: Extra Beats 

Extra beats are usually generated by R-R intervals which 

are physiologically impossible such as 0.1sec (600 BPM) 

and are corrected as follows: 

Step 4.1: Starting from the second R-R interval for all the 

R-R intervals, if the current or the previous R-R interval is 

identified as an extra beat go to step 4.2. 

    Step 4.2: Define d1 as the absolute value of the difference 

between the local average and the sum of the previous and 

current R-R intervals. Similarly, d2 and d3 are the absolute 

values of the difference between the local average and the 

current R-R interval and the previous R-R interval 

respectively. If d1 is less than d2 or d3 then the R peak 

between the current and previous R-R is eliminated. 

Figure 4 demonstrates the application of the adHQRS. 

Figure 4a shows the heart rate obtained after the filtering 

stage with the global threshold. It has extra beats at two 

different instances (shown in circles). In Figure 4b and 4c, 

the corresponding signals (S) are plotted. Figure 4d shows 

the heart rate obtained after step 4. In this case, there is no 

extra beat left. 

Figure 5 illustrates the step 4.2. RR32 is identified as an 

outlier. The difference between RR21 and the local average 

has less value than RR31 therefore the algorithm does not 

eliminate the R2 peak. However, the difference between RR42  

and local average is less than RR43 and the algorithm 

eliminates the R3 and assumes RR42 as single RR interval.  

  

III. RESULTS 

The results obtained for the datasets are given in the Table 

1. To assess the performance of this approach we used the 

TABLE I 

PERFORMANCE OF THE ALGORITHMS 

 Hilbert adHQRS 

Number of datasets 485 485 

Total Error 12003 3231 

Total Extra 5913 556 

Total Missed 6090 2675 

Total Est. Beats 1118091 1117796 

Efficiency 0.989 0.997 

Total Without Error 156 249 

 

 

 

 
Fig. 4.  a) Heart rate obtained by using the global threshold R peak 

detection (after step 2). Outliers (extra beats) are shown with red 

circles. The corresponding RHA signals are shown in b) and c). d) 

After decision step (step 4) spurious beats are eliminated. 

 
Fig. 3.  Local maxima points above threshold. 
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set of metrics in ref [8]. The efficiency of the Hilbert and 

adHQRS are 98.9% and 99.7%, respectively. In 156 datasets 

both algorithms captured all the beats correctly. In 297 of the 

remaining 329 datasets, the adHQRS had a better 

performance based on the statistics given in Table 1, 

compared to the Hilbert approach. In the rest of 32 datasets, 

both methods had the same number of errors (maximum 10 

and minimum 1) and for 1 dataset the adHQRS performed 

worse (14 vs. 13 errors).  

IV. CONCLUSION 

The adHQRS detection algorithm has shown significant 

performance and established a good signal to noise ratio. In 

addition to its proven performance, adHQRS‟s ability to 

select and combine SQUID channels indicates a possible use 

for fetal cardiac signal analysis that could be implemented 

for fetal health monitoring.   

Fetal movements during the recordings may induce 

amplitude and morphology change for the signals. The 

Hilbert amplitude is insensitive to morphological changes 

such as monopolar to bipolar cardiac signals. However, the 

signal to noise ratio may affect the detection process. With 

bio-magnetic modeling approaches such as dipole fit, it is 

possible to estimate the fetal heart location for individual 

beats within a certain error range. Empirical results indicate 

that cardiac signals obtained by using sensors in the vicinity 

of the fetal heart have higher signal to noise ratio. 

Incorporating a fetal heart tracking based sensor selection 

algorithm for the Hilbert amplitude calculation may improve 

the detection rate. 

In future work, we will address some of the pertinent 

issues mentioned above. Also the fetal heart extracted using 

this approach will be used for the behavioral state estimation 

[3], actocardiogram [10] calculation and HRV studies. 
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Fig. 5. R to R interval between 3rd and 2nd peak is identified as an 

extra beat and eliminated by the step 4.2.  
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