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Abstract— The diagnosis and treatment of hydrocephalus and
other neurological disorders often involve the acquisition and
analysis of large amount of intracranial pressure (ICP) signal.
Although the analysis and subsequent interpretation of this
data is an essential part of the clinical management of the
disorders, it is typically done manually by a trained clinician,
and the difficulty in interpreting some of the features of this
complex time series can sometimes lead to issues of subjectivity
and reliability.

This paper presents a method for the quantitative analysis
of this data using a multivariate approach based on principal
component analysis, with the aim of optimising symptom
diagnosis, patient characterisation and treatment simulation
and personalisation. In this method, 10 features are extracted
from the ICP signal and principal components that represent
these features are defined and analysed. Results from ICP traces
of 40 patients show that the chosen features have relevant
information about the ICP signal and can be represented with
a few components of the PCA (approximately 91% of the
total variance of the data is represented by the first four
components of the PCA) and that these components can be
helpful in characterising subgroups in the patient population
that would otherwise not have been apparent. The introduction
of supplementaty (non-ICP) variables has offered insight into
additional groupings and relationships which may prove to be
a fruitful avenue for exploration.

I. INTRODUCTION

Nowadays, the diagnosis and management of various

neurological and head injuries involove monitoring and

recording vast amounts of data relating to the instantaneous

pressure of the cerebrospinal fluid within the skull cavity [1].

While current diagnosis procedure depends mainly on the

mean value of this intracranial pressure (ICP) signal in addi-

tion to the surgeons observation of the clinical symptoms and

neuroimages [2],[3], the ICP waveform proves to carry a lot

of useful information and the data acquired from waveform

recording are valuable to extract relevant information about

the state of the patient [4]. However, these data sets are

large and complex, and physicians, biomedical engineers,

or surgeons are limited in the extent to which they can

draw meaningful interpretations from visual inspection of

this complex waveform. Other parameters derived from the

raw ICP waveform are expected to offer additional insight

into the nature of the underlying condition and the patients’

response to treatment.

This paper presents a multivariate analysis method based

on these additional features extracted from the ICP waveform
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TABLE I

ICP FEATURES EXTRACTED

Feature Equation

Mean 1
N

Σ xi

Curve Length Σ xi − xi−1

Energy Σ x2
i

Nonlinear Energy Σ −xi.xi−2+x2
i−1

Katz FD Σ
log(k−1)

log
max (Σi

√

(xi−x1)2+i2)

Σi

√
(xi+1−x1)2+1

+log(k−1)

Hurst ln ( range(xi)
σx(xi)

−
i
2
)

Shannon Entropy -Σ f(x).log(f(x))

Peak Power max(PSD)

Peak Frequency index(max(PSD))

Spectral Entropy -Σ PSD.log(PSD)

that allows the representation of time varying data, and

a Principal Component Analysis (PCA) that can assist in

the interpretation of this data. Although PCA is among the

most popular methods in analysis of multivariate signals,

to the authors’ knowledge, it has not yet been used in the

analysis nor interpretation of ICP data. The present work

uses PCA to identify the correlation between a number of

signal features, and identify the most revealing features,

additionally categorising patients into clusters according to

their ICP features.

Such analysis can potentially be of great help in pro-

viding an enhanced and less subjective approach to the

traditional methods for diagnosing neurological disorders

and hydrocephalus in particular. By fusing multiple clinical

measurements coupled with patients’ symptoms, this analysis

can be used for following up patients’ state and predicting

clinical outcomes.

II. MATERIALS AND METHODS

A. Clinical Data

Digital ICP recordings were taken using an intraparenchy-

mal pressure probe in the form of a Codman MicroSensorTM

miniature strain gauge mounted on a nylon catheter and

inserted into the frontal lobe parenchyma via small burr holes

in the skull. Approximately 1482 hours of anonymous ICP

recordings from 40 patients were analysed: 15 patients (37%)

were suffering from hydrocephalus with 547 hours of ICP

recordings, and others had different conditions, but all were
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Fig. 1. ICP features represented in the first and second component of the
PCA plane

exhibiting symptoms. Ages of all patients ranged from 1 to

20 years, and male to female ratio was 1:1 (20 males and

20 females). Data was recorded at different sampling rates,

40Hz, 100Hz and 400Hz, and recording length varied from

5 to 75 hours.

B. ICP Signal Features Extracted

Ten features are extracted from the ICP signal (Table I),

based on features suggested by Wiggins et al. [5] for ECG

signals and D’Alessandro et al. [6] for EEG signals. These

features are extracted using a moving time sequence window

of 6 seconds then averaged over one hour periods, and these

features are briefly described as follows. The mean value

is already used as a diagnosis parameter by physicians and

surgeons, although recent studies report its poor indication

of patient status [7]. The curve length is used for observing

changes in amplitude and frequency without sensitivity to the

measure of self-similarity. Energy of the ICP signal shows

the position trend of the signal according to certain level.

The nonlinear energy measures the energy of the signal

proportional to its amplitude and frequency. Katz fractal

dimension and Hurst parameter are used to measure long

sequence dependency and self similarity of the signal. They

are important in looking for patterns within the data. Shannon

entropy is a measure of the randomness of the signal. Peak

frequency represents the frequency of the maximum power,

where studies show that this frequency represents the heart

rate [1]. It is claimed [6] that the spectral entropy measures

the regularity of the power spectrum of the signal, and

represents a measure of the distribution of the frequency.

C. Principal Component Analysis (PCA)

PCA [8] is one of the most used multivariate methods, and

aims to optimally representing data sets and a large number

of variables to identify patterns in the data and highlight their

distribution. This method generates a new set of variables

(principal components) each of which is a linear combination
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Fig. 2. ICP features represented in the third and fourth component of the
PCA plane

of the original variables. All the principal components form

an orthogonal basis for the space of the data. PCA takes as

input a matrix of 10 columns to the features listed above, and

rows corresponding to an hour’s worth of observations. With

standardised data, the outputted matrix “coeff” represents

the correlation between principal components and variables

and “scores” represents individual readings in the principal

component space. Biplot, as they have good geometrical

representation, can be used to represent variables, where the

cosine of the angle between variables vectors reflect their

correlation, and the length of the variable vector represents

the amount of variance explained on the principal space.

Additional supplementary variables and readings can be

represented in the original calculated principal components

where they did not contribute to the original analysis, which

enables the interpretation of some variables or some read-

ings which excluded from analysis because they may have

been calculated or collected in different situations, and also

enables the projection of new data [9].

III. RESULTS AND DISCUSSION

A. Interpretation of Principal Components

In total, 91% of the variance of the data was found to

be represented by the first four components of the PCA.

The first component represents 40.5% of the variance of the

data, its positive part is represented by the spectral entropy

of the ICP signal (i.e. regularity of its spectrum) and the

peak power, while the negative part is represented by the

Katz fractal dimension and Hurst parameter which measure

the long dependance of the signal, and the entropy which

measures the randomness of the amplitude of the signal,

as shown in Fig. 1. The first component is thus mainly

defined by the regularity (randomness) of the ICP signal.

The second component represents 26% of the variance of

the data, and is represented by the energy and the mean

value of the ICP signal, as in Fig. 1. The third component
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Fig. 3. Analysis of the patients represented in the first and second
components of the PCA plane, showing three clusters of patient types

represents 15.8% of the variance, and represented by the

curve length and the peak frequency as shown in Fig. 2.

The fourth component represents 8.3% of the variance and

represented by the average non-linear energy as in Fig. 2.

Using the generated components, it would appear from

Fig. 3 that three clusters of patients can be identified. If the

data used had been descriptive, it might have been possible

to project the status of the patients on these clusters, de-

scribing clusters in terms of other physiological parameters.

These clusters are best identified by the first and the fourth

components, Fig. 3 shows clusters in the first and second

component, while Fig. 4 shows clusters from the first and

fourth components view, where each dot represents one hour

average of calculated parameters from ICP signal. Referring

to the interpretation of components, the first cluster has

higher irregularity compared to the other two (referring to

the first component) and less non-linear energy (referring to

the fourth component), which the third cluster has the highest

non-linear energy and the least irregularity.

B. Additional Supplementary Variables

Additional supplementary variables can be projected on

the generated component space. Fig. 5 shows the projection

of the Gender and Age variables on the first and second

components. The correlation between the first component

and the Gender variable is approximately 0.3, which agrees

with the manipulated data, where cluster 1 has male to female

ratio of 1:2 and clusters 2 and 3 have male to female ratio

of 2:1. This means that the males in this study show higher

peak power and spectral entropy compared to the females,

while females have higher Katz FD and Hurst parameter.

Also there is a correlation of 0.3 between the Gender variable

and the third and the fourth components, which means that

males appear to exhibit higher non-linear energy and peak

frequency compared to the females. With a correlation of
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Fig. 4. The three clusters as shown from the first and fourth components
of the PCA

0.13, between gender variable and the peak frequency which

corresponds to the heart rate, as shown in Fig. 6, this is

expected as heart rate is slightly higher for males than

females.

Fig. 5 represents the projection of the Age supplementary

variable on the third and fourth components. With the

small range of ages among patients, a good correlation of

approximately 0.5 is shown between the Age variable and

the second, third and fourth component, consistent with

visual interpretation the data. This suggests that the older

the patients are, the higher the non-linear energy is.

IV. CONCLUSIONS AND FUTURE WORK

This work has demonstrated the suitability of using PCA

for the analysis of extracted features from ICP signals of

patients suffering from hydrocephalus and other neological

disorders. Although limited in scope and utilising limited

data, this study shows the appropriateness of PCA for

analysing features extracted from ICP signal and highlights

the most revealing ones. The first four components represent

91% of the total variance of the data, the first and the

second together represent more than 66% of the variance.

Supplementary variables were added to find the relationship

between the gender and age variables and the established

principal components. Moreover, clustering patients accord-

ing to the principal components has been facilitated, allowing

the characterisation and comparison of subsets of the patient

population that might otherwise not have been immediately

clear.

With the ability of this method to cluster different groups

of patients, a more elaborate and meaningful classification

process can be applied to stratify patients into different

categories according to perceived risk and improvement.

Moreover, according to each group, this method can po-

tentially provide an effective way of determining suitable

parameter settings for programmable shunts used in treat-
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Fig. 5. Age as a supplementary variable is projected on the first and second
components of the PCA plane

ment of hydrocephalus, a process which is currently highly

subjective. Further studies can be done to investigate the

follow up of patients, by acquiring sequent data for patients

and represented as a trajectory in the PCA components, these

data should include, in addition to the ICP signal, indication

about the patients’ state such as clinical symptoms and other

measured values such as blood pressure and heart rate. For

hydrocephalus patients where valves are implanted as part

of shunting systems, other data such as valves settings, can

be analysed and configured, thus helping in improving these

shunts and finding appropriate settings for each cluster of

patients.
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