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Abstract—A correntropy-based technique is proposed for
the analysis and characterization of respiratory flow signals in
chronic heart failure (CHF) patients with both periodic and
nonperiodic breathing (PB and nPB), and healthy subjects.
Correntropy is a novel similarity measure which provides
information on temporal structure and statistical distribution
simultaneously. Its properties lend itself to the definition of
the correntropy spectral density (CSD). An interesting result
from CSD-based spectral analysis is that both the respiratory
frequency and modulation frequency can be detected at their
original positions in the spectrum without prior demodulation
of the flow signal. The respiratory pattern is characterized by a
number of spectral parameters extracted from the respiratory
and modulation frequency bands. The results show that the
power of the modulation frequency band offers excellent
performance when classifying CHF patients versus healthy
subjects, with an accuracy of 95.3%, and nPB patients versus
healthy subjects with 90.7%. The ratio between the power in
the modulation and respiration frequency bands provides the
best results classifying CHF patients into PB and nPB, with an
accuracy of 88.9%.

I. INTRODUCTION

Patients with Cronical Heart Failure (CHF) often develop
breathing anomalies, which include various forms of oscil-
latory breathing patterns characterized by rises and falls in
ventilation. Periodic breathing (PB) patterns can be classified
into ventilation with apnea, known as Cheyne–Stokes respi-
ration (CSR), or ventilation without apnea [1], [2]. Some
studies report a PB prevalence as high as 70% in these
patients. Periodic breathing and CSR both have been related
to increased mortality in CHF patients [3], [4] . Clinical
studies have presented different physiological parameters for
the detection of the above-mentioned respiratory patterns [5],
[6]. The patterns are also influenced by wakefulness or sleep,
posture, and physiological and mental activity [7].
Not only is the respiratory frequency essential when

studying periodic and nonperiodic breathing patterns, but
also the respiratory modulation frequency. Our first studies
characterized the relevant frequency band determined by the
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peak extracted from the power spectral density (PSD) of the
envelope of the respiratory flow signal [8], [9].
In this paper we propose a generalized autocorrelation

function, known as correntropy, for the study of respiratory
flow signal patterns in patients with CHF and healthy sub-
jects. Correntropy is a similarity measure which contains
information on both statistical distribution and temporal
structure of the underlying dataset. The capability of preserv-
ing nonlinear characteristics makes the correntropy a suitable
measure for determining nonlinear dynamics. Moreover, the
use of kernel methods provides computational efficiency
since it is possible to calculate the correntropy directly from
the data [10]. The respiratory pattern is therefore charac-
terized by the parameters extracted from the Correntropy
Spectral Density (CSD).
This paper is organized as follows. Section II briefly

presents the correntropy function, related parametric and
nonparametric forms of the CSD, and the different parame-
ters which are used to characterize the CSD. Section III de-
scribes the datasets used to evaluate method’s performance,
including both simulated and respiratory signals. The results
are presented in Section IV.

II. METHODS
A. Generalized Correlation Function–Correntropy
Assuming stationarity, the correntropy function is defined

as [10], [11]

V (m) = E[κ(x(n)− x(n−m)], (1)

and can be estimated using

V̂ (m) =
1

N−m+1

N

∑
n=m

κ(x(n)− x(n−m)), (2)

for each n and m ∈ N, where N is the number of samples,
E[·] denotes the expectation operator, and κ(·) is a symmetric
positive definite kernel function.
In the literature, sigmoidal, Gaussian, polynomial, and

spline kernels are among the mostly used symmetric positive
definite kernel functions in the area of machine learning,
function approximation, density estimation, support vector
machine, and others. The Gaussian kernel function is given
by:

κ(x(n)− x(n−m)) =
1√
2πσ

exp
{
− (x(n)− x(n−m))2

2σ2

}
, (3)

where σ is referred to as the kernel size parameter (“standard
deviation”). We will apply the Gaussian kernel throughout
the present paper.
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By means of the Taylor series expansion of the Gaussian
kernel, we can rewrite the correntropy function as:

V (m) =
1√
2πσ

∞

∑
k=0

(−1)k
(2σ2)kk!

E
[
(x(n)− x(n−m)2k

]
(4)

which contains all even-order moments of the random vari-
able (x(n) − x(n− m)). Different kernel functions would
yield different expansions, but all kernel functions mentioned
above are nonlinear and therefore include higher order sta-
tistical information about the input random process.
Therefore, the correntropy function partially characterizes

higher order statistics of random processes with a compact
bivariate kernel function. The emphasis given to higher-
order moments is controlled by the parameter σ , which in
this study is determined by Silverman’s rule [10] of density
estimation:

σ = 0.9AN−1/5. (5)

In this rule, A is the smaller value between the standard
deviation of the data samples and data interquartile range
scaled by 1.34, and N is the number of samples. In the issue
at hand, this technique provides a reasonable initial value
since the signal is scalar.
As the respiratory frequency can range up to 0.5 Hz, the

respiratory flow signal, recorded at 250 Hz sampling rate, is
downsampled to 2 Hz. A wide variety of artifacts have been
observed in flow signals, thus necessitating preprocessing to
condition the signal. However, a powerful advantage of the
correntropy function is its robustness against impulsive noise.
This advantage is due to the fact that when an outlier is
present, the inner product in the feature space computed via
the Gaussian kernel tends to be zero (i.e., κ(x(i)−x(i−k))≈
0 when either x(i) or x(i− k) is an outlier).
B. Correntropy Spectral Density
Similar to the conventional correlation function, it can be

shown that correntropy is a positive definite function and
therefore lends itself for many signal processing applications
[12]. Since we are interested in exploring the spectral proper-
ties of the respiratory signals, such information is conveyed
by the non parametric correntropy spectral density (CSD),
defined by:

Pv(e jω) =
∞

∑
m=−∞

V (m)e− jωm. (6)

A better spectral resolution can be obtained with paramet-
ric modeling. In particular, the autoregressive (AR) model is
suitable for signals whose PSD contains pronounced spec-
tral peaks. The extension of the correntropy to parametric
CSD based on AR modeling is straightforward because it
preserves the correlation properties.

C. Parameter extraction
The respiratory pattern is characterized by the CSD such

that two frequency bands are defined, being centered around
the respiratory frequency (“Δ fr: the respiratory frequency
band”) and the modulation frequency (“Δ fm: the modulation

frequency band”). Taking into account that the modulation
frequency of periodic breathing patterns ranges from 0.005
to 0.05 Hz, the modulating frequency peak ( f pm) is tracked
around this interval with Δ fm = 0.02 Hz. In addition, as the
respiratory frequency ranges from 0.2 to 0.4 Hz its peak
( f pr) is tracked around this interval with Δ fr = 0.2Hz. In
order to characterize the two frequency bands, a number of
parameters are evaluated for each band (see Table I).

TABLE I
PARAMETER DESCRIPTION

Parameter Description

Pm Power of the modulation frequency band
Sm Slope of the modulation frequency band
Pr Power of the respiratory frequency band
Sr Slope of the respiratory frequency band
R Relation between the Pm/Pr

III. DATASETS
A. Simulated Data
We have observed that the behavior of the respiratory

flow signal in PB patients resembles a signal subjected
to amplitude modulation (AM). For these patients as well
as for healthy subjects, the respiratory frequency usually
ranges from 0.2 to 0.4 Hz, whereas the modulation frequency
ranges from 0.01 to 0.04 Hz [7]. In order to illustrate the
method’s performance, an AM signal is simulated whose
carrier frequency is fc = 0.3 Hz and modulation frequency
is fm = 0.02 Hz, see Fig. 1.

B. Respiratory Data
Respiratory flow signals were recorded from 35 healthy

volunteers (12 males, 23 females, aged 26.6±7 years) and 26
patients with CHF (19 males, 7 females, aged 65.0±9 years)
at the Santa Creu i Sant Pau Hospital in Barcelona, Spain.
All subjects were studied according to a protocol previously
approved by the local ethics committee. The respiratory flow
signal was acquired using a pneumotachograph, consisting
of a Datex–Ohmeda monitor with a Validyne Model MP45-
1-871 Variable-Reluctance Transducer. The signals were
recorded at 250 Hz sampling rate.
According to clinical criteria, CHF patients were classified

into two groups: 8 patients with periodic breathing pattern
and 18 patients with nonperiodic breathing pattern.

IV. RESULTS
A. Illustration of the Method
Fig. 2 illustrates the performance of the above-mentioned

methods for power spectral estimation when the AM signal
is analyzed. From this figure, it is evident that the spectra
based on correntropy and correlation have very different
characteristics, the main difference being related to the
location of fm. For the correntropy-based spectra, fm is found
in the baseband and fc is accompanied with a number of
harmonics. For the correlation-based spectra, the peaks are
located at fc, fm− fc and fm+ fc, respectively, as suggested
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Fig. 1. The respiratory flow signal of (a) a PB patient, and (b) the simulated
AM signal with 0.3 Hz carrier frequency and 0.02 Hz modulation frequency.
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Fig. 2. (a) The simulated AM signal with 0.3 Hz carrier frequency and 0.02
Hz as modulation frequency, (b) its correntropy function and (c) correlation
function. The correntropy spectral density obtained with (d) Yule–Walker’s
method and (f) Welch’s method. The power spectral density obtained with
(e) Yule–Walker’s method and (g) Welch’s method.

by classical AM analysis. Note that through Welch’s method
is unable to resolve the two peaks at fm− fc and fm+ fc, see
Fig. 2(g); no harmonic pattern is present in the correlation-
based spectra. Thus, correntropy-based spectra have the
advantage of exhibiting peaks at the positions of fm and fc
and can therefore be easily detected by some peak-searching
algorithm. On the other hand, the sideband peaks of the
correlation-based spectra are difficult to detect as they can
smear with the respiratory peak at fc.
Spectral analysis is also performed on real respiratory flow

signals for the purpose of illustrating differences between
the respiratory pattern showed by CHF patients with peri-
odic breathing (Fig. 3) and nonperiodic breathing (Fig. 4),
and healthy subjects (Fig. 5). In all types of spectra, the
respiratory peak is clearly visible. The correntropy-based
spectrum of the healthy subject (Fig. 5(d)) lacks a peak
corresponding to the modulation frequency, unlike the spec-
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Fig. 3. (a) The respiratory flow signal of a CHF patient with periodic
breathing, (b) its correntropy function and (c) correlation function. The
correntropy spectral density obtained with (d) Yule–Walker’s method and
(f) Welch’s method. The power spectral density obtained with (e) Yule–
Walker’s method and (g) Welch’s method.

tra showed by CHF patients. Periodic breathing patient
presents a more powerful modulation peak than the non
periodic one (Figs. 3(d) and 4(d)). Thus, for patients with
periodic breathing, a modulation peak is easily detected
in the correntropy-based spectra but not in the correlation-
based spectra, Figs. 3(d) and 3(e). In fact, the latter type of
spectrum does not lend itself to sideband peak detection.

B. Performance Evaluation

The characterization of respiratory flow patterns is evalu-
ated in terms of the following three classification problems:
CHF patients versus healthy subjects, nonperiodic breathing
patients versus healthy subjects, and CHF patients with either
periodic or nonperiodic breathing. The parameter selection
process, being based on the leave-one-out crossvalidation, is
implemented such that the most relevant parameter subset
is selected. Since the dataset is small, a single parameter
classification is consider instead of a multiparameter one.
Table II shows the classification results achieved considering
only the most discriminative parameter.

TABLE II
SENSITIVITY (SN), SPECIFICITY (SP), AND ACCURACY, OBTAINED WITH

THE BEST PARAMETER FOR EACH CLASSIFICATION WITH

LEAVE-ONE-OUT CROSSVALIDATION

Classifications Parameter Sn Sp Accuracy

CHF vs. Healthy Pm 96.3% 94.3% 95.3%
nPB–CHF vs. Healthy Pm 94.7% 88.6% 90.7%
PB vs. nPB (CHF) R 75.0% 94.7% 88.9%
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Fig. 4. (a) The respiratory flow signal of a CHF patient with nonperiodic
breathing pattern, (b) its correntropy function and (c) correlation function.
The correntropy spectral density obtained with (d) Yule–Walker’s method
and (f) Welch’s method. The power spectral density obtained with (e) Yule–
Walker’s method and (g) Welch’s method.
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Fig. 5. (a) The respiratory flow signal of a healthy subject, (b) its
correntropy function and (c) correlation function. The correntropy spectral
density obtained with (d) Yule–Walker’s method and (f) Welch’s method.
The power spectral density obtained with (e) Yule–Walker’s method and (g)
Welch’s method.

V. CONCLUSIONS

In patients with periodic breathing, the correntropy-based
spectrum exhibits peaks corresponding to respiration and
modulation, being positioned at their true positions. As a
result, spectral characterization of respiratory flow patterns
is much facilitated. According to the parameters extracted
from the frequency bands centered around the respiratory
and modulation frequency peaks, power-related parameters
provide excellent respiratory pattern characterization. The

best result classifying CHF patients versus healthy subjects
achieved an accuracy as high as 95.3%, and classifying
nPB patients versus healthy subjects an accuracy of 90.7%,
even if the power of the modulation frequency band is only
considered. The ratio between the power in the modulation
frequency band and the respiration frequency band provided
good classification between PB and nPB into CHF patients,
with an accuracy of 88.9%. The study of patterns using
correntropy should contribute with relevant information to
enhance the prognosis of CHF patients, and may be used
as a risk indicator. The results suggest that correntropy is a
promising tool for classifying different respiratory patterns
of CHF patients and healthy subjects. Further evaluation of
the method’s performance should be done on a much larger
dataset.
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