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Abstract— Technological advances have caused a decrease in
the number of infant deaths. Pre-term infants now have a sub-
stantially increased chance of survival. One of the mechanisms
that is vital to saving the lives of these infants is continuous
monitoring and early diagnosis. With continuous monitoring
huge amounts of data are collected with so much information
embedded in them. By using statistical analysis this information
can be extracted and used to aid diagnosis and to understand
development. In this study we have a large dataset containing
over 180 pre-term infants whose heart rates were recorded
over the length of their stay in the Neonatal Intensive Care
Unit (NICU). We test two types of models, empirical bayesian
and autoregressive moving average. We then attempt to predict
future values. The autoregressive moving average model showed
better results but required more computation.

I. INTRODUCTION

Pre-term infants are especially fragile and in need of care.

Their hearts are usually not fully developed and need con-

stant monitoring. Modeling neonatal heart rate data can aid in

understanding development and diagnosing conditions such

as neonatal sepsis [1]. If a good model is found, forecasting

future values can enhance the performance of monitoring

devices by decreasing the number of false alarms [2] and

early detection of stress. Medical Literature has indicated a

relationship between heart rate variability and the condition

of an infant [3] [4] but prediction of neonatal heart rate has

not been attempted. We analyze a dataset containing over

180 pre-term infants whose heart rates were recorded over

the length of their stay in the Neonatal Intensive Care Unit

(NICU). These heart rates were collected at a sampling rate

of one minute, which is the common sampling rate in clinical

setting. The aim of our study is to find a suitable model that

can be used to predict future values.

This paper is organized as follows, in Section II the models

used are briefly described, Section III contains notes on the

estimation of model parameters and prediction methods, Sec-

tion IV presents the results and finally Section V concludes

the paper and includes future venues to be investigated.

II. SIGNAL PROCESSING MODELS

A. Autoregressive Moving Average

Autoregressive Moving Average (ARMA) is a type of

stochastic process that consists of two parts, autoregressive
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and moving average. As for the first part, it is a process where

observation at time t is represented as a weighted average

of the most recent p number of observations where p is the

length of AR. The moving average part describes the effect of

the q most recent random disturbances on the observation at

time t. Put together we have an ARMA(p,q) process where

both past observations and past random disturbances affect

current observations. [5] The following equation represents a

general ARMA(p,q) model where αi are the weights for the

previous observations in the time series x(t) and βi are the

weights for the previous values of the random noise signal

e(t).

x(t) =
p

∑
i=1

αi x(t − i)+
q

∑
i=1

βi e(t − i)+ e(t) (1)

Noise signal, e(t), is modeled as a series of independent

identically distributed random variables with zero mean and

unknown variance. This is regarded as the input to the

system, as the input cannot be measured [6].

B. Empirical Bayesian Model

Performing a differencing transformation on a time series

is a common practice in signal processing. It is usually done

to remove trend, dc component or a slowly varying mean.

Autocorrelation shows a different pattern after a differencing

transformation which helps in modeling the signal. A sample

of the heart rate signal from one patient is shown in Fig. 1.

Fig. 2 shows the autocorrelation of the original signal while

Fig. 3 shows autocorrelation after differencing. Differencing

may be repeated more than once to reveal the underlying

process.

In this model we use the distribution of these differences

to predict future heart rate values.

Let

vα(t) = hr(t)−hr(t −α); (2)

where hr(t) is the heart rate signal at time t.

The heart rate signal at time t + γ is ĥr(t + γ) = hr(t)+
v̂γ(t + γ).

v̂γ(t + γ|t, t −1, . . . , t −ρ) =

argmaxP(vγ(t),v1(t),v1(t −1), . . . ,v1(t −ρ));
(3)

where ρ is the length of the predictor, γ is the number of

steps ahead for the estimation and P is a multilevel histogram

ie multidimensional matrix whose entries are updated as

follows.
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Fig. 1. Sample Heart Rate
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Fig. 2. Heart Rate Correlation Coefficients
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Fig. 3. First Derivative Correlation Coefficients

Matrix P has ρ +1 dimensions each of size |vmin|+vmax +
1. In the training period we find vγ(t),v1(t − γ),v1(t − γ −
1), . . . ,v(t − γ −ρ). For time t the following matrix entry is

incremented:

vγ(t)+m,v1(t−γ)+m,v1(t−γ−1)+m, . . . ,v1(t−γ−ρ)+m;

where m = |vmin|+1 which is a variable used for mapping.

The maximum and minimum values of v1(t) for a number

of patients were found and after removing outliers we

selected vmin and vmax.To maintain low dimensionality of

matrix P postprocessing is done on the entries such that

vα(t) =

{
min(vα(t),vmin) vα(t) < vmin

max(vα(t),vmax) vα(t) > vmax

More than one combination of differences may occur the

same number of times thus Eq.3 may return multiple values.

To resolve such situations we propose using another matrix

SV. This matrix has 6 dimensions each of size |vmin|+vmax +
1. The heart rate signal hr(t) is classified into one of the

following states:

S(t) =






1 hr(t) ≤ 100

2 100 < hr(t) ≤ 120

3 120 < hr(t) ≤ 140

4 140 < hr(t) ≤ 160

5 160 < hr(t) ≤ 180

6 180 < hr(t)

For time t the following matrix entry is incremented:

S(t − γ),vγ(t)+m

This matrix relates vγ(t) to the state of hr(t − γ) because

it is expected that the change in heart rate is related to the

range in which the previous heart rate is.

C. Model Evaluation

For each day a patient stayed in the NICU there is an array

of 1440 heart rate samples, hr(t). To test the aforementioned

models, the heart rate data for each patient was divided into

a training segment and testing segment.

The number of days used for training was varied and the

model parameters γ,ρ,α,β were varied.

The models were then used for prediction and their per-

formance was evaluated based on mean square error between

the predicted value and the true value.

mse(t) = (hr(t)− ĥr(t))2

III. MODEL ESTIMATION AND PREDICTION

A. Autoregressive Moving Average

ARMA parameters were estimated using an iterative al-

gorithm that minimizes a robustified quadratic prediction

error criterion. The algorithm stops after a maximum of

20 iterations or when improvement is not significant. The

MATLABr function armax is used for this estimation.
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Fig. 4. 5 Step-Ahead Prediction Mean Square Error vs [p,q] variations for
different numbers of training days

B. Empirical Bayesian

Heart rate data for d number of days was used to construct

the aforementioned P matrix and SV matrix. The remaining

data was used to test the Bayesian predictor. Future values

were estimated as follows:

1) Differences v1(t),v1(t−1), . . . ,v1(t−ρ) are calculated.

2) Row v1(t) + m,v1(t − 1) + m, . . . ,v1(t − ρ) + m from

matrix P is selected

3) The index, i, of the entry with the highest value in this

row is selected

4) If more than one entry have this same value the SV

matrix is used. hr(t) is classified into the appropriate

state, S.

5) The index, i, of the entry with highest value in row S

is picked.

6) If there is more than one entry with this same value

the median is chosen.

7) v̂γ(t + γ) = i− (|vmin|+1)

8) ĥr(t + γ) = hr(t)+ v̂γ(t + γ)

IV. RESULTS

A. ARMA

Training to estimate ARMA parameters was done using

different numbers of days. The performance for 5-step ahead,

10-step ahead and 15-step-ahead prediction was tested using

the remaining days by calculating mean square error. The

average of root mean square errors from all patients’ data is

shown in Figs. 4, 5 and 6. The lowest errors were observed

when 3 days were used for training for which ARMA(3,1)

and ARMA(2,2) gave similar results for all predictor lengths.

B. Empirical Bayesian

Combinations of different numbers of training days, d,

past velocities ρ and prediction steps γ were tested. In

Figs. 7, 8 and 9 we show the average of root mean square

errors from all patients’ data versus models with ρ = 1,2,3
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Fig. 5. 10 Step-Ahead Prediction Mean Square Error vs [p,q] variations
for different numbers of training days
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Fig. 6. 15 Step-Ahead Prediction Mean Square Error vs [p,q] variations
for different numbers of training days

for γ = 5,10,15. Performance of models with 1, 2 and 3

training days was very similar. Thus this model has the

advantage of requiring less training.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we studied the applicability of ARMA models

for predicting (tracking) neonantal heart rates. We also pro-

posed and tested a histogram based Bayesian approach. Heart

rate data used is minute average and not the R-R interval

derived value. R-R interval heart rate data, has a higher

sampling rate and may produce better models but with most

commercial patient monitors it is an additional cost to extract

this data. Therefore, in order to create a practical predictor

that can be used in the Neonatal Intensive Care Unit it should

be based on the minute average. Our preliminary results are

very promising and could be practically applicable. We have

not found any other attempts to predict neonatal heart rate.
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Fig. 7. 5 Step-Ahead Prediction Mean Square Error vs Model length for
different numbers of training days
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Fig. 8. 10 Step-Ahead Prediction Mean Square Error vs Model length for
different numbers of training days

This study is preliminary and we plan to pursue it to get

more commercially applicable results.

The results indicate that the ARMA model has smaller

error than Bayesian model but larger computational com-

plexity. In addition it seems there is an optimal length for

the Bayesian approach since the error starts to increase as

the length of the model increases. However the error of the

Bayesian approach may be due to discretization levels used

in histogram modeling. Therefore in future work we will

study the discretization effects on the Bayesian approach

accuracy. A priori distribution matrix P can be smoothed

and updated for every new hr(t). Estimation of P can also

be made using data from all the patients throughout their

stay. This P matrix can be then updated to be adapted for

each patient.

Also, different window sizes can be tested for ARMA
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Fig. 9. 15 Step-Ahead Prediction Mean Square Error vs Model length for
different numbers of training days

estimation which may produce better results as the data may

be stationary in that window. A global estimate can be made

using all patient data. This estimate can be used as an initial

estimate for each patient at the beginning of monitoring and

then updated appropriately. Since the data is non stationary

adaptive AR modeling such as that discussed in [7] may

produce better results.Other measures of model performance

need to be investigated such as residual variance [6].
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