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Abstract—We report computational results of blood flow
through a model of the human aortic arch and a vessel of
actual diameter and length. A realistic pulsatile flow is used in
all simulations. Calculations for bifurcation type vessels are also
carried out and presented. Different mathematical methods for
numerical solution of the fluid dynamics equations have been
considered. The non-Newtonian behaviour of the human blood
is investigated together with turbulence effects. A detailed time-
dependent mathematical convergence test has been carried out.
The results of computer simulations of the blood flow in vessels
of three different geometries are presented: for pressure, strain
rate and velocity component distributions we found significant
disagreements between our results obtained with realistic non-
Newtonian treatment of human blood and the widely used
method in the literature: a simple Newtonian approximation. A
significant increase of the strain rate and, as a result, the wall
shear stress distribution, is found in the region of the aortic
arch. Turbulent effects are found to be important, particularly
in the case of bifurcation vessels.

I. INTRODUCTION

Human blood is a liquid with density and viscosity that is
altered by the body, based on physiologic needs and disease
states. The movement of the blood, that is hemodynamics,
inside vessels and arteries can be described by fundamental
laws of physics, i.e. equations of fluid dynamics. The scien-
tific literature now contains many citations where researchers
have used computer simulation of blood flow in various size
vessels and arteries with different spatial geometries where
experimental investigations of vascular dynamics and flow
are complicated or simply impossible to carry out (due to
small sizes of vessels) in living systems. Therefore, theo-
retical mathematical models and computer simulations are
very useful for studying blood flow to understand situations
related to health and disease [1].

Cardiovascular diseases, such as ischemic heart disease,
myocardial infarction, and stroke are leading causes of death
in Western countries. All of these vascular diseases share a
common element: atherosclerosis. They also share a common
final event: the failure or destruction of the vascular wall
structure [2].

Atherosclerosis reduces arterial lumen size through plaque
formation and arterial wall thickening and it occurs at
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specific arterial sites. This phenomenon is related to hemody-
namics and to wall shear stress (WSS) distribution. From the
physical point of view WSS is the tangential drag force pro-
duced by moving blood, and it is a mathematical function of
the velocity gradient of blood near the endothelial surface [3].
Arterial wall remodeling is regulated by WSS. For example,
in response to high shear stress arteries enlarge. Currently
researchers in the field of biomechanics and biomedicine
conduct laboratory investigations of human blood flow in
different shape and size tubes, which are designed to be
approximate models of human vessels and arteries, see
for example [1]. Some researchers also carry out intensive
computer simulations of these bio-mechanical systems, see
for example [4], [5], [6].

Also, in some special laboratory works specific stents are
implanted in such artifical vessels (tubes). Stent implantation
has been used to open diseased coronary blood vessels,
allowing improved perfusion of the cardiac muscle. Used in
combination with drug therapy, vascular repair and dilation
techniques (angioplasty) the use of metallic stents has created
a multibillion dollar industry. Stents are commonly used
in many different blood vessels, but the primary site of
deployment is in diseased coronary arteries.

Stents represent a very special case in the modeling
problems mentioned above [7]. Taking into account that
stents have a very small size and rather complicated structure
and shape, this situation makes it difficult to obtain precise
measurements. Therefore high quality and precise computer
simulation of blood flow through vessels with implanted
stents would be most useful [7], [8].

Nevertheless, there are still many difficulties in obtaining
precise realistic geometries for the required vessels. Hu-
man arteries, especially the aorta, have complicated spatial-
geometric and characteristic configurations. For example, the
aortic arch centerline does not lie on a plane and there
are major branches at the top of the arch feeding the
carotid arterial circulation. One of the main problems in
the field of bio-medical blood flow simulation is to obtain
precise geometrical-mathematical representations of different
vessels. This information in turn needs to be included in the
simulation programs.

However, in our opinion, as a first step of these inves-
tigations it would be useful to apply simpler 3D-geometry
forms and models, but to take into account the precise phys-
ical effects of blood movement such as the non-Newtonian
characteristics of human blood, realistic pulsatile flow, and
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possible turbulent effects. Because of pulsatility turbulence
may be significant in the final results of this study.

In the current work we carried out real-time full-
dimensional computer simulations of realistic pulsatile hu-
man blood flow in actual size vessels, vessels with a bi-
furcation, and in a model of the aortic arch. We take into
account different physical effects, such as turbulence and
the non-Newtonian nature of human blood. The next section
presents the mathematical methodology and the physical
model used in this work. The general purpose commercial
computational fluid dynamics program FLOW3D is used for
its basic functionality, but we supplemented its capability by
adding routines to obtain the results presented herein. Sec.
II presents results for three vessels of different geometries.
The CGS unit system is used in all simulations, as well as
for presentation of the results.

II. MATHEMATICAL METHODOLOGY AND
PHYSICAL MODELS

As we mentioned above, we undertook pulsatile human
blood flow simulation experiments using different size and
shape human vessels/arteries. For each spatial configura-
tion one needs to devise a specific approach to obtain the
numerical solution to the complicated second order partial
differential equations of fluid dynamics (FD). For example,
for simple cylindrical vessels we used the cylindrical coor-
dinate system: �r = (r, θ, φ). However, for the aortic arch or
bifurcated vessels, where there is no cylindrical symmetry,
we applied the Cartesian coordinate system: �r = (x, y, z).
For the aortic arch and bifurcated vessels we used up to five
blocks of matched Cartesian coordinate subsystems.

Below we present the FD equations in a general form,
because for each of the special cases considered in this work
and the chosen coordinate system, the partial differential
equations of fluid dynamics may look different. However
we understand, that the general differential operator form of
the equations is always unique.

A. Equations
The equations of motion for the fluid velocity components

(u, v, w) in the 3-coordinate system are the Navier-Stokes
equations with specific additional terms included in the
FLOW3D program:
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Here, (u, v, w) are the velocity components in coordinate
directions (x, y, z) respectively. For example, when Cartesian
coordinates are used, R = 1 and ξ = 0, see FLOW3D
manual [9]. Ax is the fractional area open to flow in the
x direction, the same is also true for Ay and Az . Next,
VF is the fractional volume open to flow, R and ξ are
coefficients which depend on the coordinate system: (x, y, z)
or (r, θ, z), ρ is the fluid density, Rsor is a mass source term.
Finally, (Gx, Gy, Gz) are so called body accelerations [9],
(fx, fy, fz) are viscous accelerations, (bx, by, bz) are the flow
losses in porous media or across porous baffle plates, and the
final term accounts for the injection of mass at a source repre-
sented by a geometric component. Mathematical expressions
for the viscous accelerations (fx, fy, fz) are presented in [10]
and in the Appendix of [11]. Very useful information about
FLOW3D and other fluid dynamics computer programs can
be found in [12].

The term Uw = (uw, vw, ww) in equation (1) is the
velocity of the source component, which will generally be
non-zero for a mass source at a General Moving Object
(GMO) [9]. The term Us = (us, vs, ws) is the velocity of the
fluid at the surface of the source relative to the source itself. It
is computed in each control volume as �Us = 1/ρsd(Q�n)/dA
where dQ is the mass flow rate, ρs fluid source density,
dA the area of the source surface in the cell and �n the
outward normal to the surface. The source is of the stagnation
pressure type when in equations (1-3) δ = 0.0 [9]. Next,
δ = 1.0 corresponds to the source of the static pressure type.

As we already mentioned, in all simulations we considered
the blood flow as a pulsatile flow. The final result for the
inflow waveform has been taken from figure 3 of work [13].
The pulse was applied for 5.5 cycle times in our work. These
velocity values are used as time-dependent inflow initial
boundary conditions. These numbers are included directly
in the FLOW3D program.

Next, the general mass continuity equation, which is
solved within the FLOW3D program has the following
general form:
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Rdif is a turbulent diffusion term, and Rsor is a mass source.
The turbulent diffusion term is
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where the coefficient vp = Cpμ/ρ, μ is dynamic viscosity
and Cp is a constant. The Rsor term is a density source term
that can be used to model mass injections through porous
obstacle surfaces.

B. Turbulence and Viscosity Effects
Turbulence models can be taken into account in FLOW3D.

This software allows us to estimate the influence of turbulent
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Fig. 1. Results for pressure, dynamic viscosity, turbulent energy and
velocity W. Time-dependent results for the middle point of the cylinder.
Bold black line calculations with non-Newtonian viscosity of the human
blood; red dashed line with its Newtonian approximation.

fluctuations on mean flow quantities. This influence is usually
expressed by additional diffusion terms in the equations for
mean mass, momentum, and energy. The turbulence kinetic
energy per unit mass, q, is the following
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where P is shear production, G is buoyancy production,
Diff is diffusion, and D is a coefficient [9].

When the turbulence option is used, the viscosity is a sum
of the molecular and turbulent values. For non-Newtonian
fluids the viscosity can be a function of the strain rate and/or
temperature. A general expression based on the Carreau
model is used in FLOW-3D for the strain rate dependent
viscosity:

μ − μ∞ =
μ0ET − μ∞

λ00 +
√

[λ0 + (λ1ET )2eijeij ](1−n)

+
λ2√

[eijeij ]
, (7)

where eij = 1/2(∂ui/∂xj + ∂uj/∂xi) is the fluid strain
rate in Cartesian tensor notations, μ∞, μ0, λ0, λ1, λ2 and
n are constants. Also, ET = exp[a(T ∗/(T − b) − C)],
where T ∗, a, b, and c are also parameters of temperature
dependence, and T is fluid temperature. This basic formula
is used in our simulation of blood flow in vessels and in the
aortic arch. For a variable dynamic viscosity μ, the viscous
accelerations have a special form.

The equations of fluid dynamics should be solved together
with specific boundary conditions. The numerical model
starts with a computational mesh, or grid. It consists of a
number of interconnected elements, or 3D-cells. These 3D-
cells subdivide the physical space into small volumes with
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Fig. 2. Time-dependent results for a specific geometrical point inside the
cylinder: the middle point. Black dashed line: simulations without taking
into account the turbulence; red bold line results with the turbulence. The
non-Newtonian viscosity is taken into account.

several nodes associated with each such volume. The nodes
are used to store values of the unknown parameters, such as
pressure, strain rate, temperature, velocity components and
etcetera. This procedure provides values used for defining
the flow parameters at discrete locations and allows specific
boundary conditions to be set up.

III. SIMULATION RESULTS
Our simulation results are presented below. One of the

most important preliminary testing tasks is to check for
numerical convergence. This test has been successfully ac-
complished in this work. A portion of the test calculation
results are shown bellow in this paper. Next, particular
attention has been given to the calculation of wall shear
stress distribution (WSS). WSS is the tangential drag force
produced by moving blood. It is a mathematical function of
the velocity gradient of blood near the endothelial surface:

τw = μ

[
∂U(t, y, Rv)

∂y

]
y≈0

. (8)

Here μ is the dynamic viscosity, t is current time, U(t, y, Rv)
is the flow velocity parallel to the wall, y is the distance to
the wall of the vessel, and Rv is its radius. It was shown,
that the magnitude of WSS is directly proportional to blood
flow/blood viscosity and inversely proportional to the cube
of the radius of the vessel, in other words a small change in
the radius of a vessel will have a large effect on WSS.

A. Straight Vessel: Cylinder
First, we chose a simple vessel geometry, that is we

considered the shape of a straight vessel to be a tube. In
our simulations involving a straight cylinder type vessel we
applied a cylindrical coordinate system: (r, θ, Z) with the
axis OZ directed over the tube axis. Different quantities of
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Fig. 3. Test of numerical convergence. Time-dependent dynamic viscosity,
strain rate and velocity components V and W. Results for a vessel of simple
geometry - cylinder type, for a specific spatial point inside the cylinder - the
middle point. No turbulence effects are involved in these simulations with
the realistic non-Newtonian viscosity of human blood. Black dashed line:
calculations with 0.08 size for all cells [9], red dot-dashed line with 0.07,
green double dot - dashed line with 0.065, and blue bold line calculations
with 0.062 size for all cells.

cells have been used to discretize the empty space inside
the tube. In the open space (inner part of the tube) the
fluid dynamics equations have been solved using appropriate
mathematical boundary conditions. The size of the tube is:
L = 8 cm (in length) and R = 0.34 cm (length of inner
radius). The thickness of the vessel wall is s = 0.03 cm. We
have applied 5.5 cycles of blood pulse.

Time-dependent results for pressure, dynamic viscosity,
turbulent energy and velocity component W are presented
in Fig. 1. It is very interesting to devise a comparison of the
results using both a Newtonian and non-Newtonian viscosity.
We apply the pulsatile flow and include turbulence, since it
has proved to be important [11]. The turbulence effect is also
shown in Fig. 2.

As one can see from Fig. 1, there are significant differ-
ences between these two calculations. Moreover, we specifi-
cally observed that when the two methods were applied our
results for the pressure distribution, dynamic viscosity and
turbulent energy disagree significantly. Thus, we arrive at
the important conclusion: within a time-dependent (pulsatile)
flow of human blood it is necessary to take into account
turbulence and non-Newtonian viscosity.

Finally in this sections, time-dependent results for pres-
sure, strain rate and velocity components V and W are
presented in Fig. 3. The turbulent effects are not taken into
account. We chose to present only one precise geometrical
point for comparison purposes: the middle point: r = θ = 0,
and Z = 4.0 cm. The data for Fig. 3 were obtained with the
non-Newtonian model of human blood. We refer the reader
to the comments provided about the figure. We were able to
closely replicate the values for all previous cell sizes [9] and
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Fig. 4. Time-dependent results for a vessel with bifurcation. Pulsatile blood
flow, non-Newtonian viscosity, and the turbulence effect is included. Bold
black line: results for the far right outflow side z = 0.0; red dashed line
results for the farthest up outflow side y = 0.0

obtain almost identical values. For example, pressure, wall
shear stress and other parameters, for 0.065 and 0.062 cell
sizes [9]. This means, that convergence has been achieved.

B. Bifurcation and Aortic Arch
Below we show the result of our subsequent simulation

involving a 90◦ bifurcated coronary artery, see Figs. 4 and
5. The geometrical model of the bifurcation consisted of
a 90◦ intersection of two cylinders. This model represents
the bifurcation between the left anterior descending coronary
artery and the circumflex coronary artery.

In our opinion, in the case of pulsatile flow it is more
interesting to present results in a time-dependent way. This
method can provide a wider picture of highly non-stationary
flow systems. In this paper, because of space limitations,
we have just included time-dependent results for pressure,
dynamic viscosity, turbulent energy, and strain rate. However,
we understand, that results which depend on the spatial
coordinates (r, θ, Z) for a few fixed moments of time are
also highly useful.

In the case of the bifurcation shown in Figs. 4 and 5, we
report the results for only two spatial points, which are the
two outflow sides: the far right side and the farthest upper
side of the bifurcation, see Fig. 5. The length of the lower
horizontal vessel is 4 cm and its diameter is 0.54 cm. The
length of the upper vertical vessel is 1.2 cm and its diameter
is 0.4 cm. These sizes are consistent with average size human
vessels.

Next, in Fig. 5 blood flows in from the left to the right
with the imposed initial velocity profile taken from [10],
[11], [13]. The pressure, strain rate and turbulent energy
distributions are shown for only one specific time moment
t=4.329 s. The velocity vectors are also shown on these plots.
One can see, that the turbulence energy is higher in the region
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of bifurcation. This effect should be taken into account in
such computer simulations.

In Fig. 6 we present the results of strain rate distributions
inside the arch for two specific time moments. At the far left
point, which is the inlet, we specify the pulsatile velocity
source as the initial condition. From the general theory of
fluid mechanics it is then possible to determine using the
blood density, viscosity, and spatial geometries, the dynamics
of the blood according to the Navier-Stokes equation and its
boundary conditions.

Blood flows from left to right in direction. However, be-
cause of pulsatility blood flows in the opposite direction too.
The values obtained for the strain rate are also shown. These
values strongly oscillate. From the plots one can conclude
that in the region of the arch the strain rate values become
much larger than in the region of the straight vessel. This
result represents clear evidence that in this part of the human
vascular system atherosclerotic plaques should localize less
than in the straight vessels. However, the higher wall shear
stress values in the aortic arch could be the reason for sudden
mechanical disruption of the arterial wall in this part of
the human vascular system. These computational results are
consistent with laboratory and clinical observations [2].

IV. CONCLUSION
In this work we applied computational fluid dynamics

techniques to support pulsatile human blood flow simulations
through different shape/size vessels and the aortic arch. The
realistic blood pulse has been adopted and applied from work
[13]. The geometrical size of the vessels and the aortic arch
have been selected to match the average real values. Human
blood was treated in two different ways: (a) as a Newtonian
liquid when the viscosity of the blood has a constant value,
and (b) as a non-Newtonian liquid with the viscosity value
represented by the equation (7). The numerical coefficients
in (7) have been taken from work [4].

It is always difficult to obtain a steady-state cycle profile
and stable computational results at the very beginning of
time-dependent simulations. However, after a short stabiliza-
tion period a steady-state cycle profile can be obtained. In our
simulations we used up to 5.5 pulse cycles to reach complete
steady state profiles. We obtained valid results for pressure,
wall shear stress distribution and other physical parameters,
such as the three velocity components of blood flow. All of
these were shown in Figs. 1, 2 and 3.

Our simulations showed that the FLOW3D program is
capable of providing stable numerical results for all geome-
tries included in this work. The time-dependent mathematical
convergence test has been successfully carried out. Particular
attention has been paid to this aspect of the calculations. It
is a well known fact that fluid dynamics equations can have
unstable solutions [3]. Therefore, numerical convergence has
been tested and confirmed in this work.

The result of computer simulations of blood flow in vessels
for three different geometries have been presented. For
pressure, strain rate and velocity component distributions we
found significant disagreements between our results obtained

with the realistic non-Newtonian treatment of human blood
and the widely used method in literature: a simple Newtonian
approximation.

Our results are in good agreement with the conclusions of
works [5], [14], where the authors also obtained significant
differences between their results calculated with and with-
out the non-Newtonian effect of blood viscosity. However,
the recent work [15] should also be mentioned, in which
the authors performed 2-dimensional simulations of human
blood flow through the carotid artery with and without the
non-Newtonian effect of the viscosity. They did not find any
substantial differences in their results.

Next, the influence of a possible turbulent effect has also
been investigated in this work. It was found that the effect
is important. We believe, that the physical reason for this
phenomena lies in the strong pulsatility of the flow and in
the non-Newtonian viscosity of the blood. The contribution
of the turbulence is most significant in the area of bifurcated
vessels.

Finally, a significant increase of the strain rate and, the
wall shear stress distribution, is found in the region of the
aortic arch. This computational result provides additional ev-
idence to support recent clinical and laboratory observations
that this part of the human cardiovascular system is under
higher risk of disruption [2], [16]. In future works it would
be interesting to include the elasticity of the walls [17] of
the aortic arch and other vessels.
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dynes/sq-cm to 6758 dynes/sq-cm. The middle plot represents the results for the strain rate distribution and the lower plot shows results for the turbulent
energy in the bifurcation. The range of the values is also shown.
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Fig. 6. Blood flow in the aortic arch. These two plots represent the full 2D-picture of the geometry used in these simulations. Shaded results for the
strain rate are also shown, the bars on the right show the values. Results are for two specific moments of the times t40 = 4.329 sec and t41 = 4.440 sec.
The values of the strain rate distribution range from 0.0 1/sec to 357.0 1/sec (upper plot) and from 0.0 to 671 1/sec (lower plot). The maximum values of
the strain rate are localized in the region inside the arch.
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