
  

  

Abstract— It is known that the multiunit activity (MUA) 
reflects the status of population of neurons in the vicinity of an 
electrode. We provide a quantitative measure of the 
time-varying multiunit neuronal spiking activity using an 
entropy based approach. To verify the status embedded in the 
neuronal activity of a population of neurons, we incorporate the 
discrete wavelet transform (DWT) to isolate the inherent 
spiking activity of MUA from the noise and background cortical 
activity or field potentials. Owing to the decorrelating property 
of DWT, the spiking activity would be preserved while reducing 
the non-spiking component such as the background noise. By 
evaluating the entropy of the wavelet coefficients of the denoised 
MUA, a multiresolution entropy of the MUA signal is developed. 
The proposed entropy measure was tested in the analysis of both 
simulated noisy MUA and actual MUA recorded from cortex in 
rodent model which undergoes hypoxic-ischemic brain injury. 
Simulation and Experimental results demonstrate that the 
dynamics of a population can be quantified by using the 
proposed multiresolution entropy. 

 

I. INTRODUCTION 
erving as an example of cutting edge technology, the 
modern micro-electrode recoding technology facilitated 
recording from population neuronal activity [1, 2]. 

Correspondingly there is a need for suitable quantitative 
approaches for describing the relevant information from such 
population activities. However, most previous information 
theoretic measures have dealt with the firing activity of a 
single neuron which is usually represented as a binary spike 
train with the occurrence time of spikes and spike train 
distributions [3, 4]. 

To interpret the population activities, neuroscience 
researchers have now shifted focus to studying the 
simultaneous spiking activity of multiple neurons [1, 5]. This 
makes it easier to investigate how a population of neurons 
responds to any stimuli or how neurons are interconnected in 
various regions of the brain. The simultaneously recorded 
multiunit activity (MUA) represents the aggregate spiking 
activity of a population of neurons in the vicinity of an 
electrode. The advanced signal processing and statistics 
based approach to analyze the timing of spikes from neuron 
may distort the actual information content of the spiking 
activity in MUA. That is because generally no independent 
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and precise spike information for each neuron in the 
population is available. The single unit spiking activity is 
quantified by typical methods such as firing rate and 
coefficient of variation (CV) [6, 7]. These measures have 
limit for MUA analysis since they may result in misleading 
interpretation depending on the number of recorded neurons 
at same electrode. Accordingly, a quantitative measure of 
multiunit neuronal spiking activity is needed as well. In 
general, applicable to experiments presented here, MUA is 
regarded as a nonstationary signal, making it difficult to 
evaluate the spiking activity. In addition, the recorded MUA 
signal from electrodes is often also contaminated by the noise, 
resulting in noisy MUA. 

This paper aims at quantitatively analyzing the 
time-varying MUA signals using an entropy based approach. 
Here, we propose a multiresolution entropy measure for 
multiunit neuronal spiking activity based on discrete wavelet 
transform (DWT). Recently the wavelet decomposition, 
which is based on multiresolution analysis, has been shown to 
be an effective tool to preserve or detect the spiking activity 
[8-10]. In addition, the wavelet analysis provides effective 
tool for nonstationary signal [11, 12].   The 
complexity/regularity of multiunit neuronal spiking activity 
is obtained by evaluating the entropy of spiking activity. The 
wavelet coefficients which describe the spiking activity at 
each band are obtained, and following Shannon entropy 
measure [13] quantifies the MUA signal.  

II. MULTIRESOLUTION ENTROPY MEASURE 
Let ( )s i  denotes a MUA signal. It is known that a signal is 

decomposed and de-correlated by multi-resolution wavelet 
analysis [14]. The wavelet expansion of a MUA signal can be 
defined as 

, ,( ) ( ),j k j k
k j

s i c iψ= ∑∑                              (1) 

where j and k denote the wavelet decomposition level and the 
temporal translation, respectively, and , ( )j k iψ  denotes a 
wavelet function.  

In general, the real MUA signal recorded in experiments 
was contaminated by the background noise. Using 
multiresolution based DWT, we incorporate a denoising 
process, called wavelet denoising [9, 10]. The crucial step in 
wavelet denoising is determining the threshold estimated 
from the noise-dominated wavelet coefficients. It is known 
that the threshold is proportional to the standard deviation of 
the noise [9].  

As a first step of the wavelet denoising, MUA is 
decomposed into several frequency sub-bands using DWT. 
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Then, a threshold is calculated using the wavelet coefficients 
at the detail level 1 as follows: 

1 1median( )
,

0.6745
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=wn

d d
                        (2) 

2 log ( ).wn wn eT Nσ=                            (3) 

where 1d  and 1d  denote the detail coefficient of level 1 and 
its corresponding mean, respectively. wnσ  is the estimated 
the standard deviation of the noise related wavelet 
coefficients, wnT  is the corresponding threshold, and N 
denotes the number of samples in the signal 

The next step is to suppress additive background noise in 
MUA by comparing the corresponding wavelet coefficients 
with the threshold at each detail level. At each detail level, the 
wavelet coefficients which have larger absolute value than 
the threshold are considered as spiking activity related 
components, and other wavelet coefficients which have lower 
absolute value than the threshold are thought to be noise 
related, and hence set to zero. In addition, after the jth 
decomposition level, certain detail wavelet coefficients and 
the coarse wavelet coefficients ja  are set to zero as we 
regard these as non-spiking activity related components. The 
reconstructed signal after noise suppression is a noise-free 
MUA and preserves the inherent spiking activity regardless 
of the number of neurons. 

With the aid of wavelet decomposition and denoising, 
MUA can be separated into two parts: one mainly contains 
the multiunit spiking activity and the other significantly 
carries the background noise. To access the information 
quantity embedded in the spiking activity, we use only the 
subset of the wavelet coefficients which represent the spiking 
activity. After jth level DWT decomposition, the resulting set 
of wavelet coefficients are given by 
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where l
ma  and l

md  for 1, ,l j= "  and 1, , 2l
Nm = "  are the 

approximation coefficients and the detail coefficients at 
decomposition thl  level, respectively. After denoising, we 
choose the part of (4) as the spiking activity related 
coefficients such as 
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where r  denotes the selected decomposition level, k0  

denotes the zero-valued vector with the length k  and ˆ r
md  is 

the modified wavelet coefficients by comparing with the 
threshold at rth decomposition level as follows. Note that most 
detailed components and most coarse component are ignored 
as well as the certain detail coefficients which are considered 
as non-spiking activity related.  

Next, Shannon entropy (SE) is calculated as a measure of 
the uncertainty in the spike signal. SE is defined as 

E 2
1

S ( ) log ( )
=

= −∑
M

m
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where ( )p m  is the probability of the mth microstate of the 

variable with 0 ( ) 1p m≤ ≤  and 
1

( ) 1M

m
p m

=
=∑ . To evaluate 

SE of time-varying MUA, we incorporate a temporal 
evolution approach. To do this, MUA signal is divided into a 
number of segments using a sliding temporal window. Let 

ˆ{ ( ) : 1, , }s i i N= "  denotes the MUA signal after wavelet 
denoising. Then, let us consider a sliding temporal window 
w N≤  and a sliding interval wΔ ≤ . Sliding windows of 
MUA are defined by 

ˆ ˆ( ) { ( ), 1 , , }= = + Δ + Δ…ns i s i i n w n              (7) 
where 0,1, ,[ ] 1n N w= Δ − +…  and [ ]x  denotes the integer 
part of x . Within each window ˆ ( )ns i , we carry out the 
multiresolution wavelet decomposition and following 
wavelet denoising scheme. Among the detail wavelet 
coefficients at all levels certain decomposition levels are 
chosen, which is considered to express the inherent spiking 
activity. We will denote the result of the wavelet 
decomposition and denoising for ˆ ( )ns i  as ( , )Γ r n . To 
calculate the probability, the selected set of the wavelet 
coefficients are divided as 
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where wN  is the number of samples in the window, w , and 
M  is the number of partition of the wavelet coefficients in a 
window w . 

For each selected decomposition level, the probability 
( )k

np m  in the kth set of the detail wavelet coefficients which 
the sampled signal belongs to the interval mI  is the ratio 
between the number of samples found within interval mI . 
Then, the entropy of the multiunit spiking activity of kth level, 
referred to as Ek , is calculated: 

2
1

( ) ( ) log ( )
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where 1, ,k r= "  and ( )k
np m  is the probability of finding the 

system in the mth microstate at kth level with 0 ( ) 1k
np m≤ ≤  

and 
1

( ) 1M k
nm

p m
=

=∑ . Finally, we obtain the multiresolution 

entropy (ME) evolution of MUA data { ( ) : 1, , }s i i N= "  by 
averaging entropies of kth levels such as 
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III. RESULTS 

A. Simulation studies 
To investigate the capability of the proposed entropy 

measure, the simulated MUA is used. The simulated MUA is 
obtained by using the three spike templates which were 
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recorded from cortical neurons of rat. By convolving these 
spike templates with three simulated spike trains which are 
based on inter-spike interval (ISI) model of Poisson process 
and have different firing rates (FR). To mimic actual 
simultaneously recorded MUA signals, noise with Gaussian 
probability density is added [15]. The signal to noise ratio 
(SNR) which is defined as the ratio between the absolute peak 
amplitude of the spiking activity and the standard deviation of 
the noise and we simulated as SNR = 5. The simulated noisy 
spike activity is shown in Fig. 1(a) and lasts for 40s with 10 
kHz of sampling frequency. The spike train activity starts 
with the composite of three unit activity. Then, to simulate the 
time varying changes, firing rate decreases every 10 sec. 
During the initial 10 sec, FR of each of the three spiking 
neurons is 30 (spikes/sec). Between 10 sec to 20 sec, the FR is 
10 (spikes/sec). Between 20 sec to 30 sec, it decreases to 5 
(spikes/sec). In last 10 sec, FR increases up to 70 (spikes/sec). 
For the selection of the detail wavelet coefficient level, we 
investigated the power spectral density of the four different 
durations of the simulated noisy MUA in Fig. 1(b). As can be 
seen, the biggest difference between PSDs of the four 

durations occurred between 500 Hz-2.5 kHz which 
corresponds to the second detail level and the third detail 
level with 10 kHz sampling frequency and 5j =  
decomposition levels. All periods have similar amount of 
PSD over 2.5 kHz, implying that this range mainly 
corresponds to noise only. Therefore, the detail levels 2d  and 

3d  are only used to evaluate entropy reflecting the intrinsic 
spiking activity, while the other detail levels are ignored. By 
averaging these two entropies, we evaluated the time 
dependent multiresolution entropy in Fig. 1(c). As a 
conventional wavelet based entropy, wavelet entropy (WE) 
has been developed [16]. WE measures how spread the DWT 
coefficients are over levels of decomposition. Fig. 1(c) shows 
time evolution of the proposed measure and WE. We can see 
that the proposed entropy is superior to WE in assessing the 
MUA signal.  

B. Experimental studies: MUA following hypoxic brain 
injury 

Here, we investigate the multiunit spiking activity of the 
cortical MUA recordings from rats obtained during hypoxic 
brain injury and recovery following cardiac arrest. The brain 
injury studies were carried out under a protocol approved by 
animal Care and Use Committee of the Johns Hopkins 
Medical Institution. Asphyxic cardiac arrest and resuscitation 
protocol was performed as described by Jia et al. [17].  
The experimental protocol is as follows. Five Wistar rats 
(300 ± 25 g) were used. The cortical MUA was continuously 
recorded with 6.1 kHz sampling frequency by the TDT 
system (Tucker-Davis Technologies, Alachua, FL) and 
followed by a fourth order Butterworth band-pass filtering 
with 300 Hz-3kHz. Baseline recording of 5 min was followed 
by 5 min washout to ensure no significant residual effect of 
halothaneon EEG signals. After 5 min washout, cardiac arrest 
was induced via asphyxia with disconnection of mechanical 
ventilation and clamping the tracheal tube for 7 min. During 
the injury phase, graded CA is defined by 2 parameters: the 
time to pulselessness (MAP <10 mmHg) and the time to 
return of spontaneous circulation (ROSC) during 
resuscitation (MAP>50 mmHg). Resuscitation was initiated 
by unclamping the endotracheal tube, restarting mechanical 
ventilation with 100% O2. Two channels of ECG and one 
channel of arterial pressure were recorded continuously 
before the insult, during insult, and recovery.  

Our main objective in this study is to quantify the 
information carried by the neural spiking firing activity 
during, and after asphyxic brain injury. Our hypothesis is that 
brain injury results in a reduction in information of cortical 
neuronal activity. Fig. 2(a) demonstrates a typical MUA 
recording from cortical neurons of rat. The multiunit neuronal 
activity can be divided into three distinct phases. The first 
phase consists of the 5 min baseline recording and 5-min 
washout, which is further characterized by active firing of 
spiking activity. Secondly, it is followed by 7 min 
hypoxic-ischemic brain injury after cardiac arrest. During this 
period, the MUA signal become significantly recessive and 

(a) 

 
(b) 

 
(c) 

Fig. 1. Simulated MUA and the quantification. (a) The noisy simulated 
MUA. (b) PSD plots of each duration from the noisy simulated MUA. 
(c) Time dependent multiresolution complexity plot for the simulated 
MUA  
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shows very sparse firing activity. Around 35 min-40 min, the 
firing activities gradually are detected, demonstrating that the 
brain begins to recover from injury.  

We assessed the spiking activity quantitatively using 
multiresolution entropy. The parameters used in the 
calculation were: sliding window length 20secω = , sliding 
step 20secΔ = , and level of division 30M = , and wavelet 
decomposition level 5j = . Fig. 2(b) shows the 
multiresolution entropy plot of the cortical MUA during 7 
min brain injury and recovery. The curve is normalized to its 
average value over the baseline recording period. During the 
initial duration of baseline recording, entropy remains at a 
high level. After 10 min the value of entropy abruptly 
decreases compared to the level of baseline recording. After 
resuscitation, the evolution of entropy shows an increasing 
tendency along the time progress. From this result, we can 
conclude that the entropy of the spiking activity in MUA 
reflects the degree of the neurological injury and that 
multiresolution entropy suitably quantifies this. 

IV. DISCUSSION AND CONCLUSION 
 We developed a new quantitative spiking activity measure 

as an indicator of time varying neural MUA from a complex 
brain injury experiment. By incorporating the multiresolution 
based DWT, we evaluated entropy of MUA in an objective 
way while minimizing the effect of the background noise. 
The resulting multiresolution entropy characterizes the status 
of populations of neurons. Through this measure, the MUA 
analysis can provide the foundation to evaluate and interpret 

the noninvasive neurological recordings such as EEG signals 
from the scalp. While EEG signal serve as a useful 
monitoring tool for critical brain injury as shown in our 
previous experimental study [17], the MUA analysis would 
serve a valuable role in investigating the origins of the signal 
changes and trends in the EEG epiphenomenon.  
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(a)

(b) 
Fig. 2. Raw cortical MUA of rat which is recovered after asphyxic 
cardiac arrest and the evaluated multiresolution complexity. (a) Cortical 
MUA recording. (b) Multiresolution e for cortical MUA signal. MARK 
different phases of the experiment. 
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