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Abstract— Brain state dynamics vary at different spatio-
temporal scales with behavior, stimulation, and disease, and
may be unobserved (latent). Using a state-space model
framework and subspace identification, we estimated spatio-
temporally localized, latent state changes associated with the
application of transcranial magnetic stimulation (TMS), to
assess the effect of stimulation on brain state dynamics.
State appeared to be modulated by behavior in a spatially-
specific manner and small-amplitude state fluctuations were
temporally locked to stimulus presentations. In addition, during
and following TMS, an overall, bilateral and spatially non-
specific decrease in brain state was observed. We also estimated
brain state changes during seizure evolution (independent of
TMS), in focal and generalized seizures, which have very
different epileptogenesis and propagation mechanisms, possibly
resulting also in distinct spatio-temporal dynamics. Indeed, our
preliminary results showed that in focal seizures, temporally
localized dynamic state changes occur at least 1 min prior to
seizure onset, with a decrease in steady-state followed by an
increase which reaches a maximum during the ictal interval. In
contrast, no such dynamic pattern was evident in state estimates
during generalized seizures.

I. INTRODUCTION

The scalp electroencephalogram (EEG) provides large-

scale information on brain activity and its modulation with

behavior, disorders or disease, e.g.,epilepsy, and stimulation,

e.g., transcranial magnetic stimulation (TMS). All represent

a type of perturbation to the steady-state brain activity and

induce spatio-temporal state changes in the brain at different

scales. For example, a visual task may result in localized

state changes primarily in visual areas, whereas sleep results

in a global change in brain state. Thus, in addition to the

large-scale or global Up and Down state of the brain, there

are also changes at smaller temporal and spatial scales.

Some are observable in EEG recordings, e.g., eyes closed or

inter-ictal versus ictal states in epilepsy, but there are also

latent (unobservable) states. For example, epilepsy-related

changes in brain activity may occur long before seizure onset,

possibly due to an unobservable change in brain dynamics,

including network synchronization or neuronal excitability.

There is significant interest in the estimation of dynamic

changes in brain state associated with disease or stimulation,

both for diagnostic purposes and for optimizing therapeutic

stimulation. Specifically, in epilepsy brain state changes

possibly occurring long before seizure onset, and potentially

triggering a seizure, are not well understood. In order to

predict a seizure and prevent its initiation, it is critical to es-

timate such precursive dynamic state changes. In the context
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of therapeutic stimulation, TMS is a well-established, non-

invasive method for stimulating the brain and modulating

neuronal networks. It is increasingly used to study basic

brain function, and to treat a wide range of brain disorders,

from epilepsy to psychiatric conditions [3][8]. Its spatio-

temporal optimization using EEG, to assess its effect on brain

function and maximize its therapeutic potential, is relatively

new but critical, since long-term effects and efficacy depend

on the location and timing of TMS delivery. In this study,

we present preliminary results on the estimation of brain

state dynamics in healthy subjects undergoing TMS and in

patients with focal and generalized seizures. We demonstrate

that behavior, stimulation and epilepsy modulate state in a

specific spatio-temporal manner, not directly observable in

EEG signals.

II. METHODS

A. EEG Data and TMS Paradigm

All data were collected at Beth Israel Deaconess Med-

ical Center. Scalp EEG recordings from 4 patients with

focal seizures and one patient with generalized seizures

were analyzed. The data were collected using a 42-channel

system (20 cerebral channels), in the International 10-20

System Configuration, and were sampled at 500 Hz. Scalp

EEG data from 4 healthy subjects undergoing TMS were

collected at the Berenson Allen Center for Noninvasive

Brain Stimulation. Data were collected with a 32-channel

system (29 cerebral channels), in the 10-10 configuration,

sampled at 1000 Hz. Baseline EEG recordings were obtained

during the presentation of various visual stimuli, including

pictures and a checkerboard, to establish a subject-specific

baseline. Pseudorandomly timed TMS pulses were delivered

over left primary motor cortex (M1), for motor and baseline

conditions, and at approximately the location of channel P3

for visual conditions, at areas of highest motor response of

contralateral M. abductor pollicis brevis, with the lowest

stimulation intensity. TMS was delivered by means of a

Magstim machine, and a figure eight 70 mm coil [9]. EEG

recordings were obtained continuously for approximately 60

min (30 min pre-TMS delivery and 30 min during TMS).

The intensity of the TMS pulses were subject-specific, based

on the TMS motor threshold for each subject (for eyes

open/closed, intensity was at 120% of the motor threshold,

for all other visual and motor conditions at 90% of the motor

threshold). The 60 Hz noise and its harmonics typically seen

in EEG signals was filtered out in all data, using a 2nd order

elliptical stopband filter with 1.5 Hz bandwidth. The data

were filtered in both directions to eliminate potential phase
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shifts associated with the non-zero phase of the filter. The

muscle artifact often seen in EEG signals during seizures

were suppressed using matched-filtering, when independent

artifact signatures were available from quiescent periods, or

by eliminating the highest frequency mode, when the artifact

was coupled to the seizure signal [15].

B. TMS Artifact Suppression

Application of TMS results in high-amplitude artifacts

in EEG recordings, unrelated to normal brain activity, for

approximately 20-30 ms following stimulation [13]. In this

study we estimated the duration of the TMS effect to be

approximately 20 ms. The TMS-induced current saturates the

EEG amplifiers, resulting in artifacts coupled to the true brain

activity. Conventional filtering is inefficient since the TMS

pulse is approximately a delta function and thus band-limited

only by the amplifier bandwidth. Therefore, the contribution

of the TMS pulse to the EEG signal cannot be decoupled

through bandpass filtering. Other off-line techniques have

been proposed, including the application of a Kalman filter

[13]. In that study, the EEG signal was modeled as a linear

superposition of a deterministic TMS-related component, and

a decoupled true brain activity component. Here, to eliminate

the TMS artifact, we followed a similar approach to [13],

included the TMS signal as an impulse input term in the

dynamic state model (Equation 2) and modeled the time-

dependent stochastic effect of TMS as a temporally localized

change in the variance of the output noise term ~e(t), i.e.,

assuming a 20 ms TMS effect. However, we estimated the

state of the system x̂(t) and subsequent artifact-free estimate

of the EEG signal ŷ(t)|x̂(t) using subspace identification. An

example of the artifact-free signal is shown in Figure 5.

C. State-Space Estimation

The state-space model is widely used to estimate the unob-

served (latent) state of a system, given a set of observations

and an assumed initial state. The model is described by two

equations, the state and the observations equations:

~x(t + 1) = F~x(t) + G~u(t) + ~w(t) (1)

~y(t) = H~x(t) + D~u(t) + ~e(t)

where for N sensors, ~x(t) = [x1(t), x2(t), · · · , xN (t)]
is the system state at time t, ~y(t) is the corresponding

measurement vector, ~u(t) is the system input, and w(t),
e(t) are independent system and measurement noise terms,

respectively, assumed to be zero-mean and with covariance

matrices Σ
2
w and Σ

2
e, respectively. State is assumed to be

a continuous, neurophysiologically relevant but unobserved

parameter. To model the stochastic, but temporally localized

effect of TMS on the EEG signal, we assumed the approach

in [13] and included an additional term in the measurement

noise covariance for the assumed duration of the TMS effect

(20 ms), i.e,

Σ
2
e(t) =

{

Σ
2
e(t), t > tTMS + 0.02, t < tTMS

Σ
2
e(t)e

−γ(t−(tint)), tint ∈ [tTMS , tTMS + 0.02]

where γ, the decay coefficient was directly estimated from

the EEG data and tint the assumed duration of the TMS

pulse. Matrices F, G, H, and D are the model matrices to

be estimated. In seizure-induced EEG signals, for simplicity

we assumed ~u(t) = 0, although one may assume that some

unknown non-zero input, such as an external auditory or

visual stimulus may trigger a seizure. In the case of repeated

TMS stimulation, the input ~u(t) was assumed to be an

impulse, i.e., a delta function such that:

~u(t − tTMS,n) =

{

1, if t = tTMS,n, n = 1, 2, · · · , Np

0, otherwise

where tTMS,n is the time at which a TMS pulse is applied,

and Np is the total number of pulses. There is a wide range

of methods used to estimate the state vector [7][10][18].

In this study we used subspace identification (the N4SID

algorithm) to solve for the matrices in the state space model,

directly from input-output data using linear algebra tools

[18]. Another requirement of this estimation is to choose the

order of the state space model. There are several studies that

address the problem of model order, using several criteria and

error measures to assess the adequacy of the selected model

[16][6]. Using the Akaike Information Criterion (AIC), we

estimated that order 3 and 5 models for the seizure and TMS

data, respectively, were adequate at least for preliminary

analysis. Finally, given that we expect that both seizure

evolution, (particularly focal seizures) and area-specific TMS

result in differential activation of the brain, we estimated the

state vector for each channel separately, instead of assuming

a single-input (or zero-input), multiple-output system.

III. ANALYSIS

A. Seizure data analysis

Estimation of dynamic state during seizure evolution,

provides additional information not necessarily evident from

the raw EEG signals (latent). Figure 1 shows an example of

EEG and estimated state signals at 4 channels in different

areas of the brain, during a 4 min pre- to post-ictal segment.

The lowest order state vector (order 1) is shown. There is a

temporal correlation between the seizure and the dynamic

brain state, particularly in frontal areas, where there is a

specific state signature, bilaterally (channels F7 and F8 are

in opposite hemispheres) with a clearly defined decrease

in state at about 50 s and gradual increase, reaching a

maximum during the ictal interval. Interestingly, this sig-

nature is not as well defined in distant from the focus

areas, as seen in the state variability in the occipital areas

(channel 02). In this channel, there is an overall state increase

pre-ictally and during the ictal interval, which decreases

after seizure termination. In contrast, the decrease in state

in frontal channels starts during the ictal interval. Similar

results were obtained for all analyzed focal seizures. State

may represent different parameters, including a measure of

desynchronization/hypersynchronization of neuronal activity,

non-stationarity and thus time-dependent frequency content

of brain oscillations, and even a measure of randomness

or entropy in neuronal networks. Depending on the order
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of the model, several state parameters can be estimated

simultaneously. In the case of seizures this estimate may

represent the progressive increase in abnormal network and

brain activity hypersynchronization.
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Fig. 1. EEG recordings at 4 channels (FP1, F7, F8, 02)and corresponding
normalized state vectors during a seizure with a visually identifiable focus.

We also examined potential differences in state dynamics

during generalized seizures. Mechanisms of epileptogenesis

are quite different for the two seizure types. Figure 2 shows

the estimated state vector for a generalized seizure.
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Fig. 2. EEG recordings and corresponding state vector during a generalized
seizure.

In contrast to focal seizures, there was no area-specific or

pattern-specific signature of state change during either of

the two analyzed generalized seizures. Instead, an overall

increase in state was observed starting ∼100 s prior to

seizure onset in the left hemisphere and ∼90 s in the right

hemisphere, which persisted following seizure termination.

The difference in state dynamics may reflect the onset,

localization and propagation differences between the two

types of seizures.

B. TMS-EEG data analysis

We estimated changes in dynamic state during the pre-

sentation of visual stimuli, in baseline recordings and during

TMS. An example of the estimated state vector from baseline

EEG is shown in Figure 3. An overall, area-specific variation

in state during the pre-TMS 23 min recordings, was ob-

served. Also, small-amplitude state changes were estimated,

particularly in frontal areas, which appeared to be temporally

locked to the presentation of visual stimuli.
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Fig. 3. Pre-TMS EEG recordings and respective estimated dynamic state
vectors, at channels FP1 and P7, i.e., in frontal and parietal areas. Brain
state vectors different significantly in the latter 400 s of the recording.

We also compared the estimated state at neighboring

channels, as shown in Figure 4, as a function of hemisphere

and brain area. Results were averaged over subjects.
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Fig. 4. State variability at different brain areas, for left and right
hemispheres.

State correlations within a particular brain area was highest

during the presentation of visual stimuli and decreased

in their absence, particularly towards the last 3-4 min of

the recording session. The temporally-averaged state cor-

relation coefficient varied in different brain areas and be-

tween the two hemispheres, with higher correlations be-

tween state signals in left centro-parietal channels (ρ=0.753,

CI:[0.697,0.775]) and lower correlations between corre-

sponding states in right centro-parietal and parietal channels

(ρ=0.418, CI:[0.387,0.518]). We finally compared state esti-

mates to corresponding state vectors during TMS delivery.
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An example is shown in Figure 5. Baseline and TMS-

modulated state vectors are compared in Figure 6.

Fig. 5. Raw EEG signal during TMS, artifact-suppressed signal, and state
estimates pre-TMS and during TMS at different channels and brain areas.
The raw and TMS-suppressed signals are at different scales (20:1).

Fig. 6. Brain state estimates pre-TMS (solid) and during TMS (dashed),
averaged over all subjects and channels in particular brain areas, for left
and right hemispheres, respectively.

There is a consistent large-scale decrease in brain state

during TMS application, bilaterally and non-specifically at

different brain areas. However, in right frontal and fronto-

central areas, state reaches a minimum approximately 450

s following the delivery of the first TMS pulse and sub-

sequently slowly increases. This trend is less evident and

occurs later in parieto-central and parietal areas. It is also

occurs latter in corresponding areas of the left hemisphere,

although there was significant variability in the location of

this minimum among subjects, in the range 400-650 s.

IV. DISCUSSION

We have presented preliminary results on the estimation of

dynamic brain state, at the second/minute temporal scale, in

baseline EEG recordings and during TMS delivery, in healthy

subjects, and during focal and generalized seizure evolution

in epilepsy patients. State was assumed to be an unobserved

parameter of brain dynamics and could represent a number

of neurophysiological parameters, including network syn-

chronization, excitability, temporally-varying frequency of

brain oscillatory activity, etc. Stimulation resulted in a global

decrease in brain state and progressive recovery of baseline

state started at different times depending on the brain region,

but typically at least 7-8 min following the initial delivery

of TMS. In baseline EEG recordings, small-scale state fluc-

tuations were temporally locked to the stimulus presenta-

tion. In epilepsy patients, state could represent a different

parameter of brain dynamics, such as hypersynchronization

of neuronal activity. In both focal and generalized seizures

state increased prior to seizure onset. In focal seizures, state

reached a maximum during the ictal interval and subse-

quently decreased. In contrast, in generalized seizures, state

progressively increased past the seizure termination, possibly

reflecting different onset or propagation mechanisms. These

results suggest that information on the modulation of brain

dynamics by behavior, disease and stimulation is encoded in

the EEG signal beyond its amplitude and spectrum, and may

be estimated using a state-space framework.
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