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Abstract— In this paper we assess a dependency measure for
multivariate time series termed Extrinsic-to-Intrinsic-Power-
Ratio (EIPR) using two different signal models. In a comparison
with Partial Directed Coherence (PDC) we show that both mea-
sures correctly identify imposed couplings, but that limitations
of the PDC do not affect EIPR. Moreover, EIPR is successfully
used for the localization of the seizure onset zone in ECoG
recordings from two epilepsy patients, given the exact seizure
onset time. The electrodes identified by the proposed method
are in excellent accordance with the clinical findings.

I. INTRODUCTION

A. Background

Epileptic seizures reflect an excessive and hyper-

synchronous activity of neurons in the brain. They originate

from a certain region in the brain and may spread out over

other areas. Localization of the seizure onset zone is an

important task for the clinical therapy, in particular in the

course of pre-surgical clarification. In order to identify the

focus of the epileptic zone, the manual visual inspection of

raw invasive EEG (i.e. ECoG, electrocorticogram) data is

currently still state of the art. Therefore an improvement

of the analysis of seizure initiation using mathematical

models is clinically desired: Identifying the spatio-temporal

dependencies in ictal ECoG recordings could fulfill this task.

A common approach to the analysis of coupling effects

in neural signals is autoregressive modeling. Numerous mea-

sures based on this linear framework have been published [1].

We mention two directed ones which are based on a spectral

analysis of the autoregressive model: the Directed Transfer

Function (DTF) [2] and the Partial Directed Coherence

(PDC) [3]. The later is closely linked to Granger causality,

a widely-used concept of dependency in multivariate time

series [4].

Both measures have often been applied to neural signals

for epileptic seizure analysis [5], [6], [7], [8]. Only recently

Wilke et al. [9] proposed a time-variant version of the

DTF for epileptic seizure onset zone detection, which shows

promising first results.

Hartmann et al. [10] suggested another approach to the

measurement of dependencies: Instead of performing a spec-

tral analysis within the autoregressive framework, the direct
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evaluation of regression terms reveals coupling effects. They

are the basis for a dependency measure termed Extrinsic-to-

Intrinsic-Power-Ratio (EIPR).

B. Contributions

In this paper we assess the properties of the EIPR by

comparing it to the widely used PDC. We test the ability

of the EIPR to correctly indicate dependencies imposed

by signal models. Moreover, with the help of simulations

and theoretical reflections we show that our measure is not

affected by limitations which apply to the PDC in certain

situations.

Furthermore we apply the EIPR to epileptic ECoG data in

order to localize the seizure onset zone of patients suffering

from temporal lobe epilepsy. The identification of this area

is based on the analysis of the EIPR calculated in the given

initial seconds of the seizure, revealing coupling effects

between electrodes during this early propagation stage.

II. METHOD

The analysis of multi-channel ECoG data uses real-valued

multivariate signals, which consist of K channels xk[n],
k = 1, ...,K (n ∈ Z denoting the time index). These signals

are assumed to be zero-mean and short-term stationary, i.e.

the statistics do not depend on the time index n within a

sufficiently short time window of sample length Nwin.

A. Autoregressive model

The DTF and the PDC analyze spectral properties of the

AR model. In contrast, in [10] we proposed to identify

synchronizations by regarding regression terms as described

below. We refer to [10] for a detailed discussion of our

approach and only recall the basic idea here:

For the purpose of measuring couplings, we define the

partial contribution xk,l[n] as

xk,l[n] ,

p
∑

s=1

Ak,l[s]xl[n − s]. (1)

This allows to write an autoregressive model of order p in

decomposed form for each channel xk[n], k = 1...K as

xk[n] =
∑

l

xk,l[n] + ǫk[n], (2)

where ǫk[n] is white noise. The model coefficients Ak,l[s]
have to be estimated from the data.

Thus each xk,l[n] in (2) reflects the contribution from the

respective channel xl onto channel xk. For l 6= k, we speak

about the partial extrinsic contribution, for l = k about the

intrinsic contribution.
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B. Extrinsic-to-Intrinsic-Power-Ratio (EIPR)

We expect mutual dependencies of the multivariate signal

xk[n] to indicate synchronization and coupling effects of

brain regions during epileptic seizures. In [10] we therefore

proposed to consider measures based on the variance of

xk,l[n] in (2). In order to render them scale-independent, a

normalization is needed assuring that the measure takes large

values in case of increased inflow from channel xl onto xk,

independently of the signal power.

In [10] it was suggested to normalize the variance term

V {xk,l[n]} by defining the ratio

η2

k,l ,
V {xk,l[n]}

V {xk,k[n]}
, (3)

termed Extrinsic-to-Intrinsic-Power-Ratio (EIPR). It quan-

tifies coupling or synchronization effects of channel pairs

(xl, xk), taking large values for large partial extrinsic and

small intrinsic power.

C. Partial Directed Coherence (PDC)

In Subsection I-A we mentioned that a common approach

of investigating couplings is to regard measures based on a

spectral analysis of the multivariate AR model. Among them,

we consider the PDC [3] due to its mathematical properties

such as its link to Granger causality. We will compare it to

the EIPR in this paper.

The PDC is based on the Fourier-transformed AR model

coefficients and normalized with respect to all target chan-

nels:

π2

k,l(f) ,
|Ak,l(f)|

2

∑K

n=1
|An,l(f)|

2
. (4)

Here, Ak,l(f) = δk,l − Fs→f Ak,l[s], where δk,l denotes the

Kronecker delta and Fs→f the Fourier transformation.

The PDC is bounded by 0 and 1. If π2

k,l(f) ≡ 0 ∀f , one

can conclude that there is no direct dependency from xl onto

xk. As it is unlikely in applications that one observes values

of the PDC exactly matching zero, one has to statistically

test whether values of the PDC are significantly different

from zero. Thus Schelter et al. [11] derived an asymptotic

frequency-dependent confidence interval: For each frequency

f , PDC values below the respective threshold indicate the

absence of any direct coupling.

D. Signal models

In order to assess the capability of the EIPR to correctly

detect coupling effects in multivariate signals, we test it on

simulated AR signals.

For facilitating comparison with measures in literature, we

choose a multivariate autoregressive system of order p = 5
as proposed in [1]:































x1[n] = 0.8 x1[n − 1] + 0.65 x2[t − 4] + ǫ1[n]

x2[n] = 0.6 x2[n − 1] + 0.6 x4[n − 5] + ǫ2[n]

x3[n] = 0.5 x3[n − 3] − 0.6 x1[n − 1] + . . .

. . . + 0.4 x2[n − 4] + ǫ3[n]

x4[n] = 1.2 x4[n − 1] − 0.7 x4[n − 2] + ǫ4[n]

(5)
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Fig. 1. Dependency paths of AR signal models. Graph (a) illustrates model
(5), graph (b) model (6).

The dependency paths of this model are shown in Fig. 1 (a).

In order to test the influence of different target channels,

we simplify the dependency structure of model (5) and

consider the following AR model of order p = 1:










x1[n] = 0.8 x1[n − 1] + 0.65 x2[n − 1] + ǫ1[n]

x2[n] = 0.6 x2[n − 1] + ǫ2[n]

x3[n] = 0.5 x3[n − 1] + A3,2 x2[n − 1] + ǫ3[n]

(6)

This model will be simulated with different values of A3,2 in

Subsection II-D, revealing the difference in the behavior of

the PDC and the EIPR. The imposed dependencies together

with the respective AR model coefficients are illustrated in

Fig. 1 (b), which is a subgraph of the initial system in Fig.

1 (a).

E. ECoG data acquisition

In Subsection III-B the EIPR is applied to neural signals

for the determination of the epileptic seizure onset zone.

The ECoG data used in this study consist of 28 channels

and are taken from two patients in Vienna General Hospital,

Department of Neurology, “Patient A” and “Patient B”. Both

patients were suffering from medical refractory temporal

lobe epilepsy. The ECoG signals were obtained in the course

of a presurgical examination, each lasting for approximately

one week, and referenced to an electrode outside of the

seizure focus. After recording, line interference was removed

using a notch filter at 50 Hz, and the signals were low-pass

filtered at 64 Hz in order to avoid aliasing and downsampled

from 256 Hz to 128 Hz sampling rate.

III. RESULTS

A. Assessment of EIPR and PDC

In order to test the performance of the EIPR, we first

apply it to the signal model (5) whose dependencies are well

detected by the PDC [1]. As Table I details, our measure

correctly identifies the imposed dependencies: The columns

of the table indicate the source channels, the rows the targets:

Thus, the (k,l)-element quantifies the influence from xl onto

xk. Dependencies, which are imposed by (5), are set in

bold-face type. They are considerably higher than the others,

thus properly reflecting the structure of the AR model (5)

symbolized in Fig. 1 (a).

In order to further investigate coupling effects, we simulate

model (6), whose imposed dependencies are illustrated in
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TABLE I

VALUES OF THE EIPR FOR SIGNAL MODEL (5). IMPOSED

DEPENDENCIES (BOLD VALUES) ARE CORRECTLY RECOGNIZED.

η2

k,l
x1 x2 x3 x4

x1 1.0000 0.1730 0.0004 0.0001
x2 0.0013 1.0000 0.0011 0.7238

x3 1.9094 0.2498 1.0000 0.0002
x4 0.0012 0.0007 0.0012 1.0000

0 64 128
0

0.2

0.4

0.6

f (Hz)

π
2

1,2

Fig. 2. PDC plots for model (6). PDC π2

1,2 for A3,2 = 1.2 (dashed line)

is damped compared to the initial plot for A3,2 = 0.4 (solid line), whereas
EIPR is not affected by this modification by definition.

Fig. 1 (b), twice with different parameters A3,2 = 0.4 and

A3,2 = 1.2. Assume that we are interested in the coupling

between channels x2 and x1, channel x3 given but not

considered. The alteration of the parameter A3,2 changes the

coupling (x2, x3) which we are not interested in. We thus

demand that this modification of the system must not affect

our observed dependency, say (x2, x1).
When applying the EIPR to the two simulated versions

of model (6) respectively, the imposed dependencies are

correctly recognized, and we obtain the same value of η2

2,1

in both simulations. The situation for the PDC is different:

Fig. 2 shows plots of the PDC π2

2,1(f) for A3,2 = 0.4 (solid

line) as well as for A3,2 = 1.2 (dashed line). Although the

PDC values are significantly different from zero according

to the confidence interval in either case and thus correctly

indicate the imposed coupling, they are affected by the third

channel. The PDC resulting from the parameter modification

is damped compared to the initial one – a behavior we wanted

to avoid.

B. Application to neural data

We apply the EIPR and the PDC to ECoG recordings from

epilepsy patients for the analysis of the seizure onset zone. Its

identification is based on the analysis of the EIPR calculated

in the initial seconds of the seizure, given the onset time.

The ECoG data used for this purpose were acquired as

described in Subsection II-E, representing a total of four

seizures. For each seizure, the statistics were calculated

within a window of 4 seconds covering the beginning of

the respective seizure. Thus, our measure indicates coupling

effects between electrodes during this early propagation stage

of the seizure.

The estimated statistics were used for the identification of

four AR models, each of order p = 7. In order to increase

numerical stability of the AR model identification, a channel

selection algorithm was used which is described in detail in

(a) A.1 Patient A, seizure 1 (b) A.2 Patient A, seizure 2

(c) B.1 Patient B, seizure 1 (d) B.2 Patient B, seizure 2

Fig. 3. Detection of the seizure onset zone. (a) and (b) show the onset zone
of two seizures A.1 and A.2 of patient A, (c) and (d) the ones of the two
seizures B.1 and B.2 of patient B. Arrows indicate the EIPR, electrodes
identified by clinicians are represented by filled circles. In all cases, our
results coincide well with the clinical description.

[10]: Its basic idea is that for the regression of each channel

xk, a limited number of channels xl is chosen in (2).

The results obtained are illustrated in Fig. 3. The upper

line shows two seizures of patient A, the line at the bottom

two of patient B. In each of the four graphs, the circles

represent the spatial layout of the electrodes, and the arrows

indicate values of EIPR between two electrodes. Hereby, η2

k,l

is symbolized by an arrow from electrode xl to xk. Values

below a manually set threshold were suppressed in order to

obtain clear pictures. Different thresholds were chosen for

each seizure such that only a few dominant arrows remain.

Electrodes which belong to the seizure onset zone according

to the findings of clinicians, who visually inspected the

raw ECoG recordings, are symbolized by filled circles. The

involved electrodes therefore represent the seizure onset zone

as indicated by the proposed method.

In contrast to the results in Fig. 3 obtained by application

of the EIPR, the use of the PDC with the described ECoG

data did not yield any exploitable findings (results not

shown).

IV. DISCUSSION

A. Comparison of EIPR and PDC

In Subsection II-D we showed that the EIPR correctly

identifies dependencies in model situations. In contrast to the

PDC, the EIPR is not influenced by neighborhood channels

not being considered.

For an explanation consider the denominator of the PDC:

When we study the coupling between two specific channels,

the measure indicating their dependency is influenced by

additional channels we are not directly interested in (cf. [12]).

This is easy to see when considering the model (6) depicted

by Fig. 1 (b): Changing the value of the AR model coefficient
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A3,2 (which we do not consider) affects the denominator of

the PDC π2

1,2(f) which is given by

π2

1,2(f) =
|A1,2(f)|

2

|A1,2(f)|
2

+ |A2,2(f)|
2

+ |A3,2(f)|
2

.

The PDC plots in Fig. 2 reflect this fact. Contrarily, following

our approach, the EIPR is not concerned by this problem.

This follows directly from the definition of the partial con-

tributions (1) the EIPR is based on.

One could claim that this limitation is only caused by the

fact that the PDC is normalized with respect to all target

channels. However, normalizing with respect to all source

channels as proposed in [12] causes similar limitations.

This means that in the case of ECoG signals our obser-

vation of brain activity between two examined electrodes

indicated by the PDC would be influenced by the measure-

ments of other electrodes. This is a perturbing limitation,

as the signals recorded by these complementary electrodes

compromise our observation. Assume, for example, a seizure

focus located in the middle below three electrodes. The

signals recorded depend of course on their exact position

on the cortex. When studying the brain activity between

two of them, our result is influenced by the position of the

third electrode, which we cannot adapt to our needs. These

reflections motivate our approach using the EIPR.

In order to underline the appropriateness of the EIPR we

finally note that measures such as the PDC or the DTF, which

are based on a spectral analysis, are frequency dependent.

Condensing them for graphical representation, e.g. by inte-

grating over specific frequency bands, poses problems: Apart

from the fact that we lose potentially important information,

it is not obvious at all how to interpret integrated coherences,

as the obtained value does not reflect any physical property.

Furthermore, these frequency bands would have to be chosen

explicitly, what we want to avoid for practical reasons.

Contrarily, the EIPR η2

k,l measuring the coupling between

two channels xl and xk is a scalar, allowing an intuitive

representation in two-dimensional graphs (such as Fig. 1).

B. Seizure onset zone detection

As Fig. 3 illustrates, the application of the EIPR to ECoG

recordings from epilepsy patients for seizure onset zone

detection yields promising first results. In all four cases

shown we were able to identify the electrodes which were

specified by the clinicians in their findings after visual

inspection of the raw signals.

Interestingly, regarding both seizures A.1 and A.2 of

Patient A (depicted in the upper row), our measure also

indicates electrodes which were – according to the clinical

findings – only involved some seconds later due to seizure

propagation. In the case of seizure A.1, their involvement

started about one second later. In the case of seizure A.2,

however, we observe an anticipation of five seconds, which

is outside the employed window of four seconds. Thus the

question arises whether the EIPR might be able to identify

latent statistical changes of the signal which are not easily

visible in the raw ECoG signal at that moment.

Considering Patient B, whose two seizures B.1 and B.2

are shown in the row at the bottom of the figure, our results

exactly match the clinical findings claiming two electrodes

initially involved.

V. CONCLUSION

In this paper we compared the EIPR to the PDC with

the help of signal models. We showed that the EIPR has,

in contrast to the PDC, the properties we demand for a

dependency measure appropriate for analyzing the couplings

in multivariate neural signals. Moreover, the application of

the EIPR to epileptic ECoG data for the detection of the

seizure onset zone yields promising first results.

Our method could therefore have the potential to assist

clinicians with their diagnosis and thereby help to localize the

seizure onset zone. However, this requires further research

in order to investigate properties of the EIPR in more detail

and to apply it to a larger data basis.
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