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Abstract— In this paper, we propose a model based clustering
method for functional magnetic resonance imaging (fMRI) data
to detect the functional connectivity network. The Potts model,
which represents spatial interactions of neighboring voxels,
is introduced to integrate the temporal mixture regression
modeling into one single unified model. The estimation of the
parameters is achieved through a restoration maximization
(RM) algorithm for computation efficiency and accuracy. Ad-
ditional features of our method include: the optimal number
of clusters can be automatically determined; global trends and
informative paradigms of the data are extracted by a dimension
reduction algorithm based on principal component analysis
(PCA) and a statistical significance test. Experimental results
demonstrate that our approach can lead to robust and sensitive
detection of functional networks.

I. INTRODUCTION

Analysis of functional interrelations among brain regions
from functional magnetic resonance imaging (fMRI) is of
increasing interest in neuroscience research. A variety of
model-dependent, such as the general linear model (GLM)
[1], and model-independent approaches, such as principal
component analysis (PCA) [2], independent component anal-
ysis (ICA) [3] and partial least square (PLS) [4], have
been proposed to determine task-specific activations and
to identify functionally connected regions (i.e., functional
connectivity) of the brain. However, GLM is based on
univariate analysis and does not take the spatial correlation
into account. PCA, ICA and PLS are based on multivariate
analysis, but it is sometimes difficult to interpret so many
eigenimages and one single feature of interest may split into
multiple components.

In this paper, we propose a stochastic clustering method
using a finite mixture regression model and a Potts model to
identify functional clusters or networks, based on the seed
voxels/regions. Comparing with the aforementioned meth-
ods, our method has several distinctive advantages. First, in
the traditional seed-voxel approach, the time series of seed
voxels/regions serve as reference functions to identify the
connectivity map. It is impractical to use time series of all
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voxels from the seed region since the collinearity among
the large number of time series will lead to an unstable
model. Therefore, extracting the significant signals from the
seed region is crucial for learning the functional connectivity
network. We propose to use key principal components (PCs)
from seed regions, with the number of PCs selected by
statistical significance test. Compared with the mean time
series, the PCs form a parsimonious, but yet informative
summary of the signals from the seed region, which makes
our model more robust and less sensitive to noise. Second,
we model the functional dependence on the seed regions via
a mixture regression model, where different mixture com-
ponents represent different functional clusters of activation
and connectivity. Our mixture model is more flexible than a
single parametric model used in most model based methods
and can provide a satisfactory result when local variations are
present in the data [5]. Third, we model the neighborhood
dependence through a Potts model, a generalization of the
Ising model [6], which can utilize shared information across
neighboring voxels to fit the temporal regression model. For
a finite mixture model, it is standard to use the expecta-
tion maximization (EM) algorithm to estimate parameters.
However, the incorporation of the dependence among neigh-
boring voxels is computationally intractable because of the
incalculable normalizing constant in the Potts model. Instead,
we adapt a restoration maximization (RM) algorithm [7] to
estimate the parameters in our mixture regression model with
spatial structure constraints, for efficiency and accuracy.

The remainder of the paper is organized as follows.
Section 2 formulates the functional connectivity analysis
as a mixture regression model. Section 3 introduces the
RM algorithm that incorporates spatial dependence among
neighboring voxels via the Potts model. Section 4 presents
the experimental results, and Section 5 closes this paper with
conclusions.

II. A MIXTURE MODEL FOR FMRI REGRESSION

Let Yi = [yi1, yi2, · · · , yiT ]′ denote the intensity of the
fMRI time series at voxel i = 1, · · ·N , where N is the total
number of voxels and T is the number of time points. We
model the observed time series for voxel i by a linear model
as

Yi = Xbi + εi, (1)
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where X is a design matrix consisting of significant
paradigms from different stimuli, seed regions or the whole
image, bi is an unknown linear regression coefficient, and
εi is some noise process usually modeled by a AR(1) or
ARMA(1,1) model. For example, in the standard GLM ap-
proach for connectivity analysis, the design matrix includes
the intercept, the cosine bases which represent global trends
with low frequencies, and the mean time series of the regions
of interest (ROIs) or seed regions [1].

In our approach, instead of using parametric cosine bases
to represent global trends and mean time series to represent
seed regions, we form our regressors via a nonparametric
data-dependent approach based on principal component anal-
ysis (PCA). Since the majority of voxels are not involved in
activation or connectivity, we use the top PCs from the whole
fMRI data to represent the global trends. For each of the
ROIs or seed regions, we extract the seed paradigms using
PCA after taking away global trends. In the standard PCA,
the number of PCs is often chosen to keep a certain fraction,
say 95%, of the total variation in the data, so the reduced
data still contain about 95% of the original information.
However, our goal is different here: the selected PCs should
represent the signals that are significantly different from
noise. Therefore, we adapt a χ2 test from [8] for the selection
instead of using a fixed variance percentage cut-off.

To model the functional dependence of voxels on the seed
regions, we introduce a latent variable Zi ∈ {1, 2, · · · ,K}
to denote the functional cluster label for voxel i . Voxels in
the same functional cluster should depend on signals from
various sources (background and seed regions) in a similar
way, which is reflected on the similarity of their regression
coefficients. To identify functionally dependent voxels, we
model all the regression coefficients bi’s by a mixture model:
bi = βk, Zi = k with probability wk. Consequently, the data
Yi follows a finite mixture regression model

Yi|Θ ∼
K∑

k=1

wkMVN(Xβk, σ2Σ)

where Θ = {ω1, · · · , ωK , β1, · · · , βK , σ2} denotes the
collection of all unknown parameters. To simplify the com-
putation, we assume a common temporal correlation matrix
Σ for all voxels, which is known or can be estimated by
plug-in.

III. PARAMETER ESTIMATION VIA RM

A. Potts Model

A special feature of fMRI data is the similarity between
neighboring voxels. To incorporate this spatial information
into the inference on functional clusters, we introduce a
Potts model as a prior distribution on the cluster labels
Z = [Z1, Z2, · · · , ZN ]

′
. The Potts model is a model of

interacting spins on a lattice system and is a generalization
of the well-known Ising model. The joint density function is
given by p(Z) ∝ exp(αH(Z)), where H(Z) is the energy
function representing the interaction among voxels (more
similar the neighboring voxels, the higher the energy), and α

is a tuning parameter, also known as the inverse temperature.
When the temperature is low (i.e., α is large), all labels
tend to be identical, which corresponds to a single cluster.
As the temperature increases, the single cluster will split
into multiple small ones. Therefore, different choices of the
tuning parameter α reflect our prior belief on the size of
the clusters. Later we will introduce a data-dependent tuning
approach for α.

In the context of fMRI functional connectivity network,
the energy function based on functional distance is more
meaningful since it allows disjoint brain regions to link
together [6]. Therefore, we modify the energy function used
in our work as H(Z) =

∑
i∼j κij(1− δZiZj ), where i ∼ j

indicates voxel i and j are neighbors (we use the 2D/3D
Euclidean spatial neighborhood system throughout), δZiZj

is
the delta function that equals to 1 if Zi = Zj and 0 otherwise,
κij = 1

n exp
(−f2

ij/2a2
)

with n being the average number
of neighbors per voxel, a being the average functional
distance of the nearest neighbor and fij = 1− corr(Yi, Yj)
denoting the functional distance between two voxels i and j.
Since the correlation coefficient corr(Yi, Yj) measures the
functional similarity of the acquired fMRI time series, the
new energy function scales the interaction between voxels
by their similarity presented in the data: the more similar
the data, the higher the interaction.

B. Restoration-Maximization (RM) Algorithm

The EM algorithm is a popular maximum likelihood
estimation method for mixture models, however, it faces two
obstacles when applied to our model. In the E-step we have
to evaluate

E
[
log(f(Z, Y|Θ, α)|Y, Θ̂

(m)
, α̂(m)

]

where the expectation is taking over the latent variable Z

conditioning on the data Y and the value of the parameters
Θ and α from the mth iteration. With a large number of
voxels, the joint distribution of all Zi’s is difficult to work
with. Further, the probability function of the Potts model is
defined up to a normalizing constant, which is needed in the
EM algorithm, but practically impossible to be calculated
when the number of voxels is large.

Instead of averaging out the unobserved latent variable Z

as that in the E-step, an alternative approach is to replace
each Zi by its most likely value, i.e., the probability mode.
Finding the mode of the joint distribution of Z is still
challenging, so we do it sequentially for each i conditioning
on other Zj’s, which leads to the following Restoration
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Maximization (RM) algorithm.
R-step: for each i, set Z

(m+1)
i equal to the mode of

p
(
Zi|Y, α̂(m), Z [−i]

)
, where Z [−i] denotes all cluster labels

except Zi. Due to the special form of Potts models, the
conditional density function can be further simplified to a
form which only depends on the neighboring voxels.

M-step: choose Θ = Θ̂
(m+1)

to maximize
f(Y|Z(m+1),Θ) and choose α = α̂(m+1) to maximize

the pseudo-likelihood
N∏

i=1

f
(
Z

(m+1)
i |Z(m+1)

[−i] , α
)

, where

the pseudo-likelihood is used to avoid the complicated
normalizing constant as suggested in [7].

C. Details on the updating step

At the (m+1)th iteration, after updating Z(m+1) sequen-
tially, update ωk, βk and σ2 as following: for k = 1, . . . , K,

ω̂
(m+1)
k =

1
N

N∑

i=1

I
(
Z

(m+1)
i = k

)
,

β̂
(m+1)

k =

∑
i:Z

(m+1)
i =k

(X
′
Σ−1X)−1X

′
Σ−1Yi

Nω̂
(m+1)
k

,

(σ̂2)(m+1) =
1

NT

K∑

k=1

∑

i:Z
(m+1)
i =k

(
Yi − Xβ̂

(m+1)

k

)′

Σ−1
(
Yi − Xβ̂

(m+1)

k

)
.

Numerical optimization methods are used to estimate α

and the updating step for α is as following:

α(m+1) = α(m) −
(

∂2l
(
α(m)

)

∂2α(m)

)−1
∂l

(
α(m)

)

∂α(m)
,

where the log pseudo-likelihood function is given by

l(α) =
N∑

i=1

log p(Zi = k|Z [−i], α)

=
N∑

i=1

K∑

k=1

I(Zi = k) log(p(Zi = k|Z [−i], α))

IV. RESULTS

A. Simulated Results

In the simulated experiments, we compare the results with
and without spatial Potts priors at different noise levels.
When no Potts model is embedded, the standard EM algo-
rithm and the GLM method are used for comparison. The
synthetic data size is 40× 40 and the number of time points
is 120 with a block design. There are two global trends
in the image, and three seed time series are generated by
the SPM package for three functional clusters or networks
(Figure 1). The functional cluster sizes for the three networks
are 7.86%, 7.11% and 7.74%, respectively. We performed

the experiments at three different signal-to-noise ratio (SNR)
levels ( SNR = 0.1, 0.2 and 0.3).

Fig. 1. Ground truth clusters of the simulated image (left); two global
trends (central); and three seed paradigms (right).

The first step in our method is to use PCA to extract the
global trends and the seed paradigm for each seed region.
From a χ2 test on the PCA eigenvalues, we choose one PC
as the global trend and one PC in each of the seed regions
as the paradigm.

Figure 2 plots the clustering results from the three methods
at three different SNR levels. Table 1 is a list of the cor-
responding pairwise misclassification rate, which is defined
as 1 − 1

N

∑N
i=1 I(Ẑi = Zi), where Ẑi is the estimated

value and Zi is the true value. As SNR decreases, the EM
algorithm fails to detect correct functional clusters, since
global trends dominate the entire activity and no spatial
model is available for additional information. However, the
RM algorithm works well by modeling the neighborhood
dependence through a Potts model. The GLM is not sensitive
to global trends but the performance is not as good as the
RM. Note that here we assume the true number of clusters
is known, i.e., 4.

Fig. 2. Comparison Results of RM algorithm, EM algorithm and GLM at
SNR=0.1 (top), 0.2 (middle), 0.3 (bottom).

Next, without the assumption of the known and true
number of clusters, K, we run our RM algorithm for a range
of K values from 2 to 7. Then we use AIC/BIC criteria to
determine K. The optimal number of clusters turns out to be
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TABLE I
COMPARISON OF PAIRWISE MISCLASSIFICATION RATES

SNR RM algorithm EM algorithm GLM algorithm
0.1 0.0867 0.2319 0.1482
0.2 0.0040 0.2319 0.1262
0.3 0.0012 0.1023 0.0950

4 for both AIC and BIC, which is consistent with the ground
truth. The clustering results for different K are displayed in
Figure 3, and it indicates that K = 4 produces the best
fitting.

Fig. 3. Comparison of RM algorithm at different number of networks
when SNR=0.2.

B. Empirical Results

The real fMRI data set (53 × 63 × 46 ×
360) is obtained from the SPM data site
(http://www.fil.ion.ucl.ac.uk/spm/data/attention.html) with a
visual motion task. The subject was scanned during four
runs, with 90 image volumes in each run. Four conditions
- “fixation”, “attention”, “no attention” and “stationary”
- were used and there were 10 multi-slice volumes per
condition. The SPM package is used for the standard
preprocessing.

We use PCA to extract the global trends of the data. Based
on the χ2 test, three principal components are selected as
the regressors. The first component corresponds to a linear
trend, the second one corresponds to a low frequency trend
with some task paradigms, and the third one represents a
jump trend resulting from different trials. From AIC/BIC, the
optimal cluster or network number is chosen to be K = 4.
Figure 4 is a demonstration of the posterior cingulate cortex
(PCC) functional network. In the figure, we can find several
regions of interest, such as left inferior parietal cortex (left
IPC: region “A”), right inferior parietal cortex (right IPC:
region “B”), ventral anterior cingulate cortex (vACC: region
“C”), medial prefrontal cortex (MPFC: region “D”) and left
dorsolateral prefrontal cortex (left DLPFC: region “E”). This
demonstrates that such regions are functionally connected
with the PCC even in visual tasks [9].

Fig. 4. Functional connectivity network of PCC regions in real fMRI data.

V. CONCLUSION

This paper presents a novel fMRI functional network
detection method based on a finite mixture regression model,
incorporating the spatial interactions of neighboring voxels
via a Potts model. The estimation of the parameters is
achieved through the RM algorithm for computation effi-
ciency and accuracy. In addition, the global trends and the
informative paradigms of the data are extracted from PCA
and statistical χ2 test. Experimental results on simulated and
real fMRI data show that the proposed approach can lead to
a robust and sensitive detection of functional clusters and
networks.
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