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Abstract— Boolean functions have been used to analyze the 
molecular networks of cells.  For example, A B represents if A 
becomes active B will be activated. This method is effective for 
qualitatively analyzing networks but is not suitable for studies 
of kinetic behaviors of networks. In the present paper, a 
dynamic Boolean method was developed by combining Boolean 
operations with molecular interaction parameters (delay or 
response times). The Boolean operations characterize the 
discrete interactions among biological components.  The delay 
times describe the quantitative kinetics.  The combination of 
the two characterizes the discrete biological interactions of 
networks.  For example, BA

BAt →
represents that if A becomes 

active B will be activated after an activation time 
BAt →

. By 
using this dynamic logic method, we achieved the following 
results: we proved the general theorems to determine bistable 
states and oscillation behaviors of networks, we showed that 
time delays are essential for oscillation behaviors, we proved 
that single variable networks are either bistable or oscillatory, 
and we explained why a signal can have multiply responses 
from different networks. In addition, we analyzed the mitosis 
cycle of budding yeast cells.  We showed that the mitosis cycle is 
not only robust against structural changes but also robust 
against fluctuation in kinetic parameters (e.g. delay times).  

I. INTRODUCTION 
IOLOGICAL networks are complicated. This is because 

there are almost infinite nuclei acids, proteins, and other 
biological molecules that are building components to 
construct various networks; these components interact with 
each other across all the levels and ranges. Quantifying all 
these components and interactions is not a very realistic goal 
at the present. Fortunately, it is found that many biological 
networks have some simple characteristics. First, many 
biological components take all-or-none states (ON/OFF or 
active/inactive). Secondly, many components change their 
values when being stimulated and return back to their 
previous values after their functions are completed. These 
two features make it possible to use simple Boolean method 
to study the biological networks [1,2]. However, simple 
Boolean method cannot be used to study the kinetic 
properties of networks because it does not have time 
components.  In this paper, we introduced a dynamic logic 
method by combining time delays with Boolean method.  
This method allows us to study the kinetic properties of 
molecular networks without knowing the detailed values of 
components.  This method is a discrete procedure for solving 
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delayed differential equations (DDE). 

II. NOMENCLATURE AND ASSUMPTIONS 
 The terminology of graph theory is used to describe 

molecular networks. Protein, Gene, mRNA, or metabolic 
compounds are called nodes (A, B, etc.).  Nodes can be at 
active states (A, B…) or inactive states ( BA, …). The 
interactions among nodes are called edges. For example, 

BA →  is an edge in which node A activates node B (Figure 
1).  We refer to the nodes that stimulate other nodes as 
“stimulators” and the nodes that respond to stimulations as 
“responders.” Before stimulations, the responders are at 
“ready states (ON or OFF).”  After the nodes fully respond 
to stimulation, they are “responding states (OFF or ON). 
Ready states can be either ON or OFF and so are responding 
states. Response time of an interaction is referred to as the 
interval from the time when the stimulator starts to act on its 
responder to the time when the responder reaches its 
responding state.  For example, BAt →  is the response time 
for A to activate B.  We refer the time within which a node is 
active as to active pulse width ( AT ).  Inactive pulse width 
( AT ) is defined similarly. This paper focuses on systems in 

which if A directly interacts with B, TA needs to be greater 
than BAt →  in order to activate B. 
 

Figure 1.  The states and 
interactions of molecular 
network A  B.  Both nodes A 
and B are assumed to have only 
ON and OFF states.  Therefore, 
their activity curves have step 
shapes.    

 
We assume network 

components (nodes) take discrete states such as active states 
and inactive states. We also assume that a component will 
automatically return to its ready state from its responding 
state within a response time after the stimulation stops.  
These two assumptions define the applicable ranges of the 
present dynamic logic method.  

III. DYNAMIC LOGIC REPRESENTATIONS  

A. Dynamic logic sequence and time sequence 
A dynamic logic sequence of a system is defined as a 

sequence composed of stimulator states, response times, and 
responder states. For the system BA → , one dynamic logic 
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sequence is BA
BAt →

 representing A activates B within an 

activation time (delay) BAt → . Similarly, BA
BAt →

 

represents A  deactivates B within a time 
BAt →

.  We can also 

write down a time sequence. For example, for the network of 
Figure 1 we have a time sequence 

BABAABBABA
BAAABA tttttttt )()()()( 0000 →→ ++++

. In this sequence, A and B 

initially are inactive. A becomes active at time t0.  B is 
activated then.  After a period of

BAA tt →+  both return inactive 

(we assumed tA >tA B).  
There are rules for logic sequence: (1) a dynamic logic 

sequence of a network contains maximum number of its 
node states; (2) at any given time within a sequence, a node 
takes only one state (ON or OFF); (3) the node states in a 
sequence have to meet the requirements defined by logic 
relationships. The time distances between stimulator states 
and the responder state are equal to the response times; (4) if 
a network system has more than one sequence, these 
sequences are written down in an addition format.    

B. Algorithm 
One of the simplest system is BA → .  The logic values of 

this network, )( BAV → , are  

BABABAV
BABA tt →→

+=→ )(             (1) 

Where, “+”means the system can take either one of the two 
values depending on the external conditions. A second 
simple network is a system composed of A and B with a 
deactivation relationship, BA |− . The value of this system can 
be obtained in a similar way. It is BABABAV

BABA tt →→
+=− )|( . We 

can confirm that the logic relationship “ BA |− ” is equivalent 
to “ BA → ”.  Activation and deactivation are relative 
concept. That is,   

)()|( BABA →↔−                (2) 
Complicated structures can be decomposed into the above 

simple ones. We use product operation to represent 
decomposition.  For example, CBA →→  can be 
decomposed into ( BA → )( CB → ).  The values are    

CBACBACBAV
CBBACBBA tttt →→→→

+=→→ )(      (3) 

Similarly, a double deactivation relationship has a value of   
ABAABABAV

ABBAABBA tttt →→→→
+=)( . This system has two stable 

values (bistable). Similarly, a double activation network has 
ABAABABAV

ABBAABBA tttt →→→→
+=)( .  

A network with mixed deactivation and activation is 
interesting; it has oscillation behavior:  

...)( ABABABAV
ABBAABBA tttt →→→→

=         (4)  

The components of the system oscillate in the order of 
ABAAB  with a period equal to 

ABBAABBA ttttT →→→→ +++= .  

If delay from A to A is zero, then A and A  have to co-exist 
and so do B and B , which is impossible and oscillation does 
not occur.  Therefore, delay time between stimulation and 

response is essential for oscillation.  

C. Merging operation 
If two directly interacting components have an activation 

relationship, they tend to have same states (both ON or OFF 
with delay times). But if they have a deactivation interaction, 
they tend to have different states, one takes ON and the other 
OFF. If two components have both activation and 
deactivation relationships, the system oscillates instead of 
being bistable.   These observations can be used to simplify 
large systems.  The procedure is referred to as merging 
operation; consecutive nodes with activation interactions can 
be merged into one group with all its nodes having a same 
state.  For example, A B C D can be merged into 
[ABCD], where [ ] is used to indicate that the nodes inside 
have activation relationships.  This group of nodes is 
referred to as activation group node. The response times 
between nodes within the group can be calculated by adding 
all the response times between them.  For examples, we have 

DCCBBADA tttt →→→→ ++=  and DCCBBADA tttt →→→→ ++= . The 
network A B C D can also be merged into A  [BCD].   

D. Theorems for single variable systems 
A single variable network is one in which all the 

components (nodes) have no more than one stimulator.   
Theorem 1:  if a single variable network is a tree, the 

network has two states [3].    
Theorem 2: if a single variable network is a cycle, it has 

two stable states as long as the number of the deactivation 
relationships is an even number [3].   

Theorem 3: if a single variable network is a cycle and has 
odd number of deactivation relationships, the network does 
not have stable state.  Instead, it oscillates with a 
characteristic period [3].    

E. Multiple variable systems  
Multiple variable systems are those in which at least one 

component has more than one stimulator.  A simple multiply 
variable network contains two stimulators and one 
responder.  The two stimulators can be either activator or 
suppresser. They can have either AND or OR relationships.  
One example is BCA →∧ )(  representing that B becomes 
active only after both A and C become active. Another 
example is BCA →∧ )(  representing that B becomes active 
after A becomes active and C becomes inactive. The values 
of each network can be calculated [3]. For example:  

BCABCABCABCA
BCAV

BCABCABCABCA tttt →Λ→Λ→Λ→Λ
∧+∧+∧+∧=

→∧
)()()()(

))((  

IV. SIGNALS TRAVEL IN NETWROKS 

A. Signals travel in linear chains 
A linear chain has n nodes, N1, N2,…Nn,  each of which 

stimulates the one next (right) to it.  This network is E  N1 
 N2  …  Nn-1  Nn, where E is an external signal. 

Before time t0, N1 is inactive.  At t0, E activates N1.  This 
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activation signal propagates into the chain.  Node Ni 

responds to the signal after a time ∑ +→→ =
11 jjj NNNN tt . 

If the external signal turns N1 off at time T, Ni responds to 
the signal after a time ∑

+→→ =
11 jji NNNN tt . If the external 

signal is a pulse (width T), each node has a pulse with a 
width of )(

11 ++ →→ −+= ∑ jjjj NNNNi ttTT . This simply indicates 

that the pulse width of each node is different.  Each node 
will change the pulse width by an amount of 

)(
11 ++ →→ −

jjjj NNNN tt  that can be either an increase or decrease.  

If the pulse width is decreased as the signal travels through 
the chain, the signal is terminated when the active pulse 
width of a node gets shorter than the activation response 
time needed for this node to activate the next one.  Thus, for 
a same chemical signal, if it has different pulse width (T), it 
travels to a different depth of a same chain and results in 
different biological responses.  If the pulse width is 
increased as the signal travels, the nodes of the chain can 
have broader active pulse width than the external signal.  
Then a short external stimulation can result in an elongated 
response.  Therefore, a same type of chemical signal can 
have more than one response in chains that have different 
abilities to modify pulse width.    

B. Signals travel in bistable loops 
A biostable loop is composed of n nodes with the 

following relationship: 

  
Where, Ni-1 activates Ni. If 1NNE n →∨ , a pulsatile 
activation signal can activate the entire network permanently 
if the pulse width of each node increases. But if the pulse 
width of some nodes decreases, the external signal can 
terminate. This is similar to the situation of signal traveling 
in linear structures. This simply suggests that different 
cycles react to a same external pulse signal differently.  The 
cycle can be either entirely activated or be activated for a 
short period of time and return to inactive state.   Systems 
where Nn and E have AND relationship can be analyzed in a 
similar way. 

C. Signals travel in oscillation loops 
Signal traveling in oscillation loop can be analyzed in the 

same way as for bistable loops.  The difference is that the 
states of the nodes of oscillation loops change between 
active and inactive alternatively while it stays the same in a 
bistable cycle.   

D. Single variable systems are either stable or oscillatory 
Systems with their nodes having no more than one 

stimulator are either stable or oscillatory.  There is no 
chaotic behavior.  This can be proved [3].   

V. GENERAL PROCEDURE 
A system that has many nodes may be analyzed by using 

the above multiplication procedure. It also can be analyzed 
with a general method that is analogous to numerical 
methods for ordinary differential equations.   

For a system composed of n nodes, N1 to Nn, the first step 
is to identify state conditions of all the nodes based on the 
available experimental observations.  For example, if it is 
observed that Nl and Nm jointly activate (AND) Nj, the active 
and inactive condition of Nj are  

jt N
jNmNlN →∧

                (5) 

jtjtjt NNN
jNmNlNjNmNlNjNmNlN →∧→∧→∧

++       (6) 

Where “+” in Equation 6 indicates that there are three 
deactivation conditions, each of them can lead to Nj to 
become inactive. A second step is to choose initial states for 
all the nodes and use them as the initial point for a time 
sequence of the system (initial condition). A third step is to 
determine the time sequence of the system based on the 
initial condition and the state conditions (Equations 5 & 6) 
of all the nodes.  This is done by increasing time by a small 
step tδ  (< all the response times), checking all the nodes 
and determining whether their state conditions are met so 
they can be activated or deactivated.  If any node is activated 
(deactivated), append the time and new state of the node to 
the time sequence.  Update the node states and continue this 
operation until the sequence become stable or oscillating 
over time.  This stable or oscillating sequence is a value of 
the system. A fourth step is to repeat third step with different 
initial conditions to find out all the other values of the 
system.  

VI. EXAMPLE: BUDDING YEAST MITOSIS 
Budding yeast cell mitosis circle is one of the most 

studied systems [4].  A number of proteins are involved in 
the cycle.  Li et al. studied this system and found that the cell 
cycle was inherently robust against deleting certain edges.  
However, because quantitative response times were not 
available, it is not clear whether the robustness is also true 
against variations of response times.  Here we will use the 
present dynamic logic method to demonstrate that this 
network is also robust against variations in response times. 

We adopted the logic structures of cell cycle from 
reference [4] and plotted in Figure 2. Because there is no 
response time reported, we randomly set them being close to 
each other (e.g. the activation times of the nodes cdh1, 
Mcm/SFF, cdc20, and cdc14 were set to 0.9 and that of the 
rest of nodes were set to 1.  The deactivation times of the 
nodes cdc20 and swi5 were set to 0.9 and that of the rest of 
the nodes were set to 1).  We determined the state conditions 
of all the nodes [3]. For example, node SBF is controlled by 
nodes Cln3 and Clb1,2 through a logic relationship, 

SBFClbC →∧ 2,13ln . The state conditions of this node are 

SBF
SBFClbCt →∧ 2,13ln

, SBF
SBFClbCt →∧ 2,13ln

, SBF
SBFClbClbt →∧ 2,12,1

, and 

SBF
SBFClbClbt →∧ 2,12,1

.  The state conditions for all the other 

components can be determined in the same way.  Each 

N1 N2 E Nn-1 Nn … 
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node has two parameters. One records its current ON/OFF 
state.  The other records when it has its most recent state 
change.    

 
Figure 2. Simplified 
molecular network of 
yeast cell mitosis 
cycle adapted from 
reference [4].  Blue 
arrows indicate 
activation and red 
lines (blunt) indicate 
deactivation.  The 
Detailed Boolean 
relationships can be 
found in reference 
[3]. 

 
 
 

Next, we set all the nodes to be active except the three 
nodes that represent the checkpoints (Inter S, DNA, and 
Spindle checkpoints). We used this set as an initial value for 
a time sequence of the system.   Set run time to be zero. 

Then, we determined the evolution of the time sequence 
of the system based on the initial condition (all nodes being 
active) and the state conditions of all the nodes.  This was 
done by increasing time (e.g. a step of 0.07), checking all the 
nodes and determining whether their state conditions were 
met so they could be activated or deactivated.  If any node 
was activated (or deactivated), update the state and state 
change time of that node and append that node to the time 
sequence of the system.  The process was repeated until the 
sequence became oscillating over time.  This oscillating 
sequence is show in Figure 3.  As expected, the sequence 
represents a change from G1, to S, to G2, and to M phases.  
These phases were determined based on reference [4].  This 
calculation was repeated for 213-1 times with different initial 
condition (same delay times).  Same mitosis cycle was 
obtained (although detailed time sequences might change).   

 
 
 
 
 
 
 
 
 

Figure 3.  Calculated mitosis cycle of yeast cells.  G1, S, G2, and M 
represent the four phases of mitosis [4].   
 

We randomly changed the response times (one each time) 
and calculated the time sequence of the system (the initial 
condition was that all the nodes were active). We observed 
that changes in most of the response times by two orders of 
magnitude (e.g. 0.01 to 1) did not disturb the cell cycle from 
G1 through M (although detailed time sequences might 
change). A few response times had narrower ranges (0.5 – 
1), such as the activation times of the nodes Cdc20 and Swi5 

and deactivation times of the nodes Mcm/SFF, Pds1, and 
Cdc20.  This new observation suggests that the mitosis cycle 
of yeast cells is robust against variation of interaction 
response times as well. 

We also observed that disconnecting some edges did not 
disturb this cell cycle (e.g. cdc20 ─| clb5,6 and Mcm1/SFF 

 cdc20).  However, the cycle stops if disconnecting the 
edge from DNA Replication to Clb1,2.  This observed 
sensitivity is consistent with the experimental observations: 
cell does not move into the next phase if its DNA replication 
is not completed.  Also, it was observed the cycle was 
stopped if any of the three check points was active.    

VII. DISCUSSIONS 
The application of logic method in biological networks 

has been promoted by Kauffman [1] and Thomas et al [2].  
The previous method was based on truth tables [2] and can 
be used to determine the steady state behaviors of molecular 
networks.  The present method combines logic methods and 
delay times of node interactions. It allows us to determine 
the kinetic sequences and time sequences that characterize 
the steady-state and kinetic properties of the networks.  
Because of this, the present method can be used to analyze 
networks at different levels of details depending on the 
availability of quantitative kinetic parameters. This is an 
advantage of the present method over deterministic methods 
(e.g. ODEs or delayed DEs) because the latter require 
detailed kinetic parameters.  It is also an advantage over the 
previous logic methods that are not suitable for studying 
kinetic properties.  If a complicated network system can be 
decomposed into modules and motifs, these modules or 
motifs may be readily studied with the above methods. 
These advantages of the present dynamic method may help 
to fill in the gap between the need and availability of 
quantitative parameters of biological interactions. In a 
certain sense, the present method can be used to obtain 
overall pictures of molecular networks before doing detailed 
studies. 
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