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Abstract— Good blood glucose control is important to people
with type 1 diabetes to prevent diabetes-related complications.
Too much blood glucose (hyperglycaemia) causes long-term
micro-vascular complications, while a severe drop in blood glu-
cose (hypoglycaemia) can cause life-threatening coma. Finding
the right balance between quantity and type of food intake,
physical activity levels and insulin dosage, is a daily challenge.
Increased physical activity levels often cause changes in blood
glucose due to increased glucose uptake into tissues such as
muscle. To date we have limited knowledge about the minute
by minute effects of exercise on blood glucose levels, in part due
to the difficulty in measuring glucose and physical activity levels
continuously, in a free-living environment. By using a light and
user-friendly armband we can record physical activity energy
expenditure on a minute-by-minute basis. Simultaneously, by
using a continuous glucose monitoring system we can record
glucose concentrations. In this paper, Gaussian Processes are
used to model the glucose excursions in response to physical
activity data, to study its effect on glycaemic control.

I. INTRODUCTION

Maintaining normoglycaemia is a daily challenge for peo-

ple with type 1 diabetes. Timely administration of insulin and

a healthy diet are vital in keeping blood glucose within the

physiologically acceptable range of 4−7mmol/l. Extensive

research has been going on in the last thirty years in

modelling the glucose-insulin system [1]. Most of the models

proposed are based on either the Bergman’s minimal model

[2] or Sorensen’s physiological model [3]. These models of-

fer a qualitative prediction tool for blood glucose, in response

to exogenous insulin and carbohydrate intake. It was only

recently that [4] and [5] extended Bergman’s and Sorensen’s

model respectively to account for the effect of physical

activity. Exercise has major effects on blood glucose, mainly

due to the increase of glucose uptake in target peripheral

tissues such as muscle. In both cases this was modelled by a

single parameter PV 0max
2 , which represents the percentage

of the maximal oxygen consumption (V 0max
2 ). Both models

are physiologically based and can explain qualitatively what

happens during varying levels of physical activity. However,

they are not data-true models and hence cannot fully explain
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the erratic changes in blood glucose which occur normally

in people with type 1 diabetes.

Rollins et al. [6] and Vyas et al. [7] were the first to

model free-living physical activity data from the armband

[8] and relate it to blood glucose. In both cases the data was

obtained from a single type 2 diabetic wearing the armband

and the continuous glucose monitoring system (CGMS) for

25 days. They used Wiener models and statistical machine

learning algorithms respectively to identify data-true models

which explain the variation in blood glucose levels, given

the physiological signals measured by the armband.

In this paper, Gaussian Processes are used to obtain data-

true models for data coming from type 1 diabetic people

wearing both the armband and the CMGS at the same time.

Being completely insulin deficient, type 1 diabetics exhibit a

more pronounced excursion from the normoglycaemic range

compared to type 2. This makes the modelling process even

more challenging.

II. METHODS AND DATA ACQUISITION

In this section, after briefly presenting the study protocol,

the two main data acquisition devices used in the study are

discussed.

A. Study Protocol

This study was approved by the local ethics committee

LREC: 07/H0502/134. So far a total of 18 people (9 females)

have been recruited in this ongoing study. Table I shows

the characteristic data for this cohort, displayed as mean

± standard deviation. After consenting to the study, several

clinical baseline tests are performed to establish individual

physiological parameters. These have been deemed to be

beyond the scope of this paper discussion and hence omitted.

Each participant was then given a SenseWear R© Pro 2 arm-

band [8] and the Guardian R© CGMS [9]. These were worn

for approximately two weeks (the glucose sensor needs to be

replaced every three days). At the same time the participant

was asked to keep a detailed food and insulin diary. This

data collection is repeated again after six months to study

seasonal variations in glycaemic control.

B. SenseWear R© armband

The armband monitors physical activity using five different

sensors:

1) Transversal acceleration (measure of movement)

2) Longitudinal acceleration (measure of movement)

3) Heat flux (average heat dissipated or absorbed by the

arm)
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TABLE I

PARTICIPANT’S BASELINE CHARACTERISTICS

Characteristic Value
n=18, 9 Females

Age 36.9±11.6 years
Years with diabetes 16.3±10.9 years
Weight 73±14.4 kg

BMI 25.4±5.6 kg/m2

HbA1c 8.2±1.6 %

4) Galvanic skin response (electrical conductivity be-

tween two points on the arm)

5) Skin and near-body temperature

The sensors are sampled at 32Hz and an average or MAD

(mean of absolute differences) value is stored every minute.

These physiological signals are then combined together using

a proprietary algorithm to estimate the physical activity

energy expenditure.

C. Medtronic Guardian R© Real-Time Continuous Glucose

Monitoring System

To understand the minute-by-minute relationship between

exercise and blood glucose, the latter needs to be contin-

uously monitored. The Guardian R© Real-Time Continuous

Glucose Monitoring System (CGMS) by Medtronic (Min-

iMed Inc., CA) is one of the most advanced glucose monitors

currently on the market. It uses a needle-type glucose sensor

which is inserted subcutaneously and measures interstitial

glucose. From this data, blood glucose can be estimated.

To avoid measurement noise from causing sudden changes

in the read-out, the signal is passed through a rate-limiting

filter. Subsequently, the blood glucose estimate is updated

every 5 mins. Note that the device needs to be calibrated

against a standard finger-prick measurement every 12 hours.

III. MODELLING FREE-LIVING DATA

Physiologically-based compartmental models use first or-

der differential equations to describe glucose dynamics.

Although they can predict qualitatively the overall effect on

blood glucose, they are unable to fit free-living data. Assum-

ing that our prior knowledge is limited, Gaussian Processes

[10] will be used to identify data-true black box models.

Before doing so, the modelling of insulin and carbohydrate

intake is briefly discussed.

A. Modelling Insulin

Type I diabetics are completely insulin deficient, hence all

of the circulating insulin is provided exogenously through

subcutaneous injections. Several insulin flow models have

been proposed in the literature [11]. The pharmacokinetic

model recently proposed by Tarin et al. [12] was employed

here since it is a generic model and covers most of the

insulin preparations currently available. This model uses

three coupled partial differential equations which describe

the time-evolution of insulin in both its hexameric and

dimeric form. For further details about this generic model,

the reader is directed to Tarin et al. [12].

B. Modelling Food Intake

The digestive system is very complex and only few models

have been proposed in the literature. Here we use one of the

simplest, yet most popular model, proposed by Lehmann et

al. [13]. The amount of glucose entering the bloodstream via

the guts is modelled as:

Ġgut(t) = Gempt(t) − kabsGgut(t) (1)

Ra(t) = kabsGgut(t) (2)

Where

Ggut(t) is the amount of glucose in the gut [mmol]
Gempt(t) is the rate of gastric emptying [mmol hr−1]
kabs is the rate constant for gut absorption of glucose [hr−1]
Ra(t) is the rate of glucose appearance in the bloodstream

[mmol hr−1]

C. Gaussian Processes

Gaussian Processes (GPs) is a relatively new data mod-

elling technique popularised within the machine learning

community by Rasmussen and Williams [10]. It returns a

non-parametric probabilistic model. A GP is defined as an

infinite ensemble of random variables, any finite number of

which have a joint normal distribution. It is fully charac-

terised by its mean and covariance function [10]:

f(x) ∼ GP(m(x), k(x, x’)) (3)

m(x) = E[f(x)] (4)

k(x, x’) = E[(f(x) − m(x))(f(x’) − m(x’))] (5)

Where

x is a d-dimensional input space

f(x) is the process we want to model

m(x) is the mean function

k(x, x’) is the covariance function

In GPs we specifically model the correlations between

the input space. This is very important when dealing with

highly correlated inputs (as is the case here). By quantifying

the similarity between all of the training inputs and the

testing input, a value for the function output is inferred

within a Bayesian framework. The prior in this case is placed

on the function itself. This is very different from other

Bayesian techniques, where the function class is usually

chosen beforehand and the prior is put on its parameters.

These are then chosen to fit the data.

Thus, in GPs, the mean and covariance functions convey

all of our prior knowledge about the process. Without loss

of generality the mean function is usually taken to be zero.

However, in our application a more informed approximation

would be the blood glucose level corresponding to the

individual’s HbA1c (a clinical measure of long-term average

for blood glucose). The covariance function (the similarity

metric) is the most important design parameter as it con-

veys information about the system such as stationarity and

smoothness. One of the most popular stationary covariance

function is the squared exponential:
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kse(x, x’) = σ2
f exp(−

1

2
(x − x’)T L(x − x’)) (6)

Where

σ2
f is the function variance

L = diag(l)−2 is the length-scale matrix

Note how the length-scale l dictates how ‘far’ apart each

scalar input x needs to be so as to be deemed correlated.

Together with σ2
f , these form the hyperparameters of a

GP model. These are typically estimated from the data by

minimising the marginal log-likelihood. As discussed in [10],

the length-scale l can be used for Automatic Relevance

Detection (ARD). An input with a very large l will have no

effect whatsoever on the inferred output. Hence, that input

can be considered to be insignificant. Using this technique,

the most important regressors can be chosen.

IV. RESULTS AND DISCUSSIONS

As an example of a subject-specific model, data collected

from a participant is presented in this section. The training

data consisted of 6 days, while the validation set consisted

of approximately 3 days.

A. Choosing the regressors

Although ARD can be used to choose the most important

regressors, we still need to decide which ones to start with.

The more regressors in the input space, the more complex

the marginal log-likelihood function becomes and the more

local minima it will have. Also, the regressors that we choose

must be easily understood by clinicians if they are going to

use such models to help treat their patients. Glucose (g),
carbohydrate intake (cho) and insulin (i) are the obvious

regressors. But what about the physical activity parameters?

Transversal and longitudinal acceleration data is difficult

to interpret. However, METs (Metabolic EquivalenT) in

(kcal/kg/hr), a parameter that can be derived from such

data (and other variables measured by the armband), is

clinically well known and understood. It is a multiple of

the resting metabolic rate, that is, the amount of calories

that the body ‘burns’ to keep itself functioning. Heat flux

(hf) in (W/m2) and skin temperature (st) in (◦C) are two

other parameters which are easily understood by clinicians.

Galvanic skin response (µSiemens/m), on the other hand,

was left out because it is difficult to interpret by a diabetolo-

gist and from the data collected it was found to have a very

small variance. Hence, it is not a persistently exciting input

and thus is not suited for model identification purposes.

B. Results

Following from the previous discussion, the input space

will now look like this:

[g(k − 1) . . . g(k − n), cho(k − 1) . . . cho(k − n),

i(k − 1) . . . i(k − n), hf(k − 1) . . . hf(k − n),

st(k − 1) . . . st(k − n), met(k − 1) . . . met(k − n)] (7)

Thus, the next step is to choose a value for n, the number

of lagged variables. Intuitively, lags of n = 6 for g, i and

cho, n = 24 for hf and st, and lags between 12 and 48 for

met were considered. Since the sample time is 5mins, these

correspond to lags of 30mins, 2hours and 1hour to 4hours

respectively. These reflect the range of time constants for

each variable which were verified by simulations. People

with type 1 diabetes tend to suffer from hypoglycaemic

events well after they have engaged themselves in strenuous

exercise. This is indeed reflected by the range of regressors

chosen for MET which is our main metric for physical

activity.

The squared exponential covariance function defined in 6

was chosen for our model. Measurement noise was modelled

using a covariance function of the type knoise(x, x’) = σ2
nI .

Where σ2
n is the noise variance, which is assumed to be

constant throughout the whole process. Hence, the complete

stationary covariance function is:

k(x, x’) = kse(x, x’) + knoise(x, x’) (8)

The marginal log-likelihood was then minimised and after

using ARD, the model shown in Table II was identified.

Note that all the input signals (apart from glucose, the output

variable), were normalised to be between [+1,−1].

TABLE II

IDENTIFIED MODEL

Regressor Length-Scale Regressor Length-Scale

g(k − 1) 4.0393 g(k − 2) 5.5136
cho(k − 1) 0.6528 cho(k − 6) 0.2285
i(k − 2) 0.5353 i(k − 3) 0.4737

hf(k − 4) 0.7004 st(k − 1) 0.4228
st(k − 3) 0.2893 st(k − 13) 0.7160

met(k − 42) 0.4280 - -

Hyperparameter Value Hyperparameter Value

σ2

f
2.3924 σ2

n 0.1050

By iteratively feeding back the posterior mean of the

output, 5 (25mins), 12 (1hour) and 48 (4hours) -step ahead

predictions on the validation set were performed. These are

depicted in Figure 1 together with the model-predicted output

(that is, infinite-step ahead prediction).

C. Discussions

The results obtained suggest that the identified model

can predict glucose in the long-term reasonably well. For

the model-predicted output it is interesting to note that

although the predicted value was consistently higher than

the measured one, the rate of change is quite similar. That

is, the model was able to track a decrease/increase in blood

glucose. This suggests that the assumption of stationarity

is not correct. The mean of our system is changing over

time. Note that HbA1c is an average over 120 days, hence

assuming this average for a three day validation set is only

a crude assumption.

There are various other challenges faced in this modelling

problem. Carbohydrate intake and insulin models are merely

look-up tables. They do not differentiate between subjects.
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Fig. 1. Multiple-Step Ahead Predictions

22:30 10:30 22:30 10:30 22:30

4

6

8

10

12

14

16

Time

B
lo

o
d

 G
lu

c
o

s
e

 (
m

m
o

l/
l)

5−Step Ahead Prediction

 

 

Measured

Predicted

22:30 10:30 22:30 10:30 22:30

4

6

8

10

12

14

16

Time

B
lo

o
d

 G
lu

c
o

s
e

 (
m

m
o

l/
l)

12−Step Ahead Prediction

 

 

Measured

Predicted

22:30 10:30 22:30 10:30 22:30

4

6

8

10

12

14

16

Time

B
lo

o
d

 G
lu

c
o

s
e

 (
m

m
o

l/
l)

48−Step Ahead Prediction

 

 

Measured

Predicted

22:30 10:30 22:30 10:30 22:30

4

6

8

10

12

14

16

Time

B
lo

o
d

 G
lu

c
o

s
e

 (
m

m
o

l/
l)

Model−Predicted Output

 

 

Measured

Predicted

Carbohydrate and insulin absorption vary considerably be-

tween people. Also, the assumption that only carbohydrates

affect blood sugar is not correct. Fat and protein in food

trigger processes (e.g gluconeogenesis) by which glucose

is synthesised and supplied to the bloodstream when it is

needed. On the other hand insulin absorption depends on

various parameters such as the dose, site of application and

exercise (which tends to increase the diffusion rate). This in-

formation is excluded from the model, which leaves glucose

and physical activity as the only measurable variables.

As with any other sensing technology they both suffer

from measurement noise. In particular, blood glucose which

is estimated indirectly from interstitial glucose. Its accuracy

is very dependent on the frequency and quality of the

calibrations (at least every 12 hours). Calibrations need to be

performed when glucose is the most stable, usually before

going to bed, early morning or just before a meal. These

calibrations are performed against standard glucose meters,

which have an absolute error themselves. As regards the

armband, full details of its validation can be found in [8].

Finally, volunteers were normally monitored for up to 12

days (four glucose sensors). Although it would be very useful

to prolong this, it is very difficult in practice. Even though

the devices used are reasonably small and light, participants

do not feel comfortable wearing them for longer. Also, the

glucose sensor needs to be replaced every three days (for

health and safety reasons). Hence, effectively we are only

getting three days of continuous data, because it is very rare

that people wear them back-to-back. Considering the large

lag between exercise and its effect on blood glucose, this

poses another challenge on the modelling problem.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have shown that Gaussian Processes may provide a

good starting point for modelling free-living physical activity

data. The importance of these subject-specific models is to

be able to understand the lag involved between a person

performing daily physical activity and its effect on blood

glucose. This information can be related back to an indi-

vidual’s glycaemic control. Specifically, how is the persons

lifestyle helping them (or not) in maintaining glucose within

a narrow band, both in the short-term and longer-term.

B. Future Work

We are still in the process of collecting more data from

our volunteers. Having obtained data from different people

who engage themselves in varying levels of physical activity,

we will compare these person-specific models and look for

similarities and major differences. A longer-term objective is

to identify a single model structure in which parameters are

related to different lifestyles. This will enable us to study the

benefit, in terms of glycaemic regulation, of changing ones

lifestyle.
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