
  

  

Abstract—Nitric Oxide (NO) plays a crucial role in the 

regulation of blood flow around the body. Biological 

experiments have shown that blocking NO production induces 

vasomotion, which is caused by instabilities in blood vessel 

walls. It has been suggested that the observed vasomotion on 

NO blockade is because a NO flow dependent system is actually 

stabilised by the myogenic system, since the coupling together of 

two unstable mechanisms can enable a system to become stable. 

We thus propose here a model for the interaction between flow 

and NO production, with a flow feedback mechanism and 

analyse its stability both numerically and analytically. We show 

that the presence of flow feedback introduces instability, which 

thus provides the basis for a more detailed model of the 

autoregulation response, when coupled with a model of the 

myogenic response, and derive a result for the oscillation 

frequency of the system. 

I. INTRODUCTION 

HE modeling of NO has been an active area of research 

ever since its vital role in the regulation of blood flow 

was first realised. An adequate and continuous blood supply 

is a vital mechanism for homeostasis. The first models of NO 

transport were developed by Lancaster (see for example 

Lancaster, 1997), with it being shown that the concentration 

of NO in the bloodstream is strongly influenced by the flow 

of blood through the vessel. This can be termed the NO-flow 

dependent system (Buerk, 2001). 

Biological experiments in rat cerebral arteries (Lacza et 

al., 2001) show that blocking the production of NO induces 

chaotic vasomotion. Vasomotion represents spontaneous 

rhythmic changes of the vessel diameter, the introduction of 

a NO donor causes which to cease. It is thought that 

vasomotion may be produced because of instabilities in the 

myogenic response, originally proposed by (Bayliss, 1902). 

A number of models have thus been proposed to simulate the 

oscillations caused by vasomotion, for example (Gonzalez 

and Ermentrout, 1994), (Parthimos et al., 1999) and (Marsh 

et al., 2005). However, there are several mechanisms that 

interact, making analysis difficult, particularly with regard to 

its stability. One hypothesis, which we partially explore here, 

is that the observed vasomotion on NO blockade is because 

there is a NO flow dependent system which is actually 

stabilised by the myogenic system, as discussed by (Marsh, 

2005). 

This arises from the fact that the coupling together of two 

unstable control systems can result in a stable system. For 
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example, a dither is a high-frequency signal introduced into a 

system with the object of modifying its nonlinear 

characteristics. By dithering a system it is possible to 

augment stability, quench undesirable limit-cycles, and 

reduce nonlinear distortion under a wide range of conditions 

(Zames and Sneydor, 1976). The removal of either one of 

these aspects can make a dithered stable system unstable. In 

this paper we develop a simple model for the flow dependent 

NO behaviour and analyse its stability. This provides the 

first step in the construction of a coupled myogenic / flow 

dependent NO model, which will be invaluable in 

understanding better the processes that govern the 

autoregulation of blood flow.  

II. THEORY 

To explore the role of NO, we consider here its interaction 

with the blood vessel wall, and hence the vessel cross-

sectional area, and flow rate. Although this considers the 

wall to be purely a passive medium, it provides a first step in 

understanding the key pathway of NO and its behaviour. The 

myogenic response is not considered here since the focus is 

solely on the NO-flow dependent system. The myogenic 

response and its coupling with the flow dependent system 

will be considered separately. The general mass transport 

equation is presented first, as this provides the basis for NO 

behaviour, before considering the relationship between NO 

and radius and finally between radius and flow. The full 

model is then presented before its behaviour is analysed. 

A. Mass Transport Equation 

NO concentration in the bloodstream is governed by the 

general mass transport equation: 

NONONO
NO RCDC
t

C
+∇=∇+

∂

∂ 2.U , (1) 

where NO concentration, CNO, is dependent upon the local 

velocity field, U, the diffusion coefficient, D, and the local 

reaction rate, RNO. In blood vessels, NO concentration is 

usually assumed to be circumferentially symmetric and is 

thus a function of three parameters: distance along the x-axis; 

change in radial distance, r, and time, t. Convection in the 

axial direction is frequently neglected and the steady state 

solution can then be determined analytically as a function of 

radius if the reaction rate is known (Buerk, 2001). Since 

solving the full diffusion-reaction-convection equation, is 

very complicated and dependent upon the boundary and 

initial conditions, a much simpler approach is adopted here 

to perform an initial investigation into the system stability. 
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To remove the geometrical variations, equation 1 is 

volume averaged and referenced to steady state values of 

concentration and flow. Diffusion is thus neglected and the 

reaction is assumed linearly proportional to concentration. 

Equation 1 thus reduces to a first order form: 

)()(
_

* CCCqq
dt

dC
c −=−+ βτ , (2) 

where C denotes the volume averaged concentration of 

NO in a single blood vessel. Note that, as flow increases, it 

sweeps out more NO, thus reducing C. The concentration 

thus reduces as the flow increases; for simplicity, we assume 

a linear dependence on flow, as implied by equation 1. 

NO concentration and axially averaged flow, q, are both 

defined relative to their baseline values, denoted by the 

overbar. Equation 2 is a very simplified form of equation 1 

with   being dependent upon time only and diffusion being 

neglected. The time constant, cτ , and feedback parameter, 

*β , can be determined from the full solution of the 

convection-diffusion-reaction equation, but are assumed here 

to have fixed values for simplicity. The effects of variations 

in these parameters on the model behaviour will be examined 

later. 

B. Vasodilation 

The effect whereby the vessel’s radius increases to meet 

the tissue’s requirement for elevated blood flow, 

vasodilatation, is widely acknowledged. For simplicity we 

assume here that the vessel radius, R, increases with C due to 

vasodilatation, again in a first order linear manner: 

RR
dt

dR
tR −=τ , (3) 

where: 

)1(1 −=−
C

C

R

Rt α , (4) 

Note that the ‘target’ vessel radius, Rt, is set by the 

volume-averaged level of NO to adjust the tissue’s required 

flow level and feedback parameter α . The vessel radius 

responds to this ‘target’ value with time constant Rτ , 

mimicking the behaviour of the vessel wall as a visco-elastic 

medium. Although the parameters in this part of the model 

can be determined by experimental measurement, they will 

vary from vessel to vessel and under different pathological 

states. The effect of variations in these parameters will thus 

be examined later. 

C. Flow Coupling 

In order to complete the feedback mechanism between NO 

concentration and radius, the relationship between radius and 

flow must be included. For steady state linear flow in a rigid 

vessel, the Poiseuille equation holds. However, the flow has 

inertia as well as friction. We thus mimic this using the well 

established concepts of resistance and inductance in an 

equivalent electrical circuit as: 

dt

dq
IqRp s +=∆ , (5) 

which, in non-dimensional form, given that resistance is 

inversely proportional to vessel radius to the power 4, yields: 

4
rf

dt

df
f +−=τ , (6) 

where qqf =  and p∆  is assumed constant. The time 

constant, fτ , is equal to the ratio of inertia to resistance for 

the vessel. For vessels of diameter 1 mm, it is of order 1 

second (Wilmer and Rourke, 1998), although it will vary 

from vessel to vessel. Its precise value can be calculated 

from solutions of the full axi-symmetric Navier-Stokes 

equations. Note that the flow equation is very strongly 

nonlinear, as is equation 2, due to the resistance being a 

function of radius to the fourth power. This nonlinearity is 

important since nonlinear interactions can give rise to a 

number of interesting system properties, including chaos, 

synchronization, and frequency modulation, which may be 

physiologically important, and which cannot occur in linear 

systems. 

D. Full Model Equations 

The model is thus described in a non-dimensional form by 

three non-linear coupled equations: 

)1()1( −−−= fcc
dt

dc
c βτ , (7) 

( ) )1(1 −+−= cr
dt

dr
R ατ , (8) 

4
rf

dt

df
f +−=τ . (9) 

where non-dimensional NO concentration and vessel radius 

are given as CCc =  and RRr =  respectively. The 

model has three time constants: cτ , Rτ  and fτ ; and two 

feedback parameters: α  and β . There are two non-linear 

effects: the product of concentration and flow in equation 7 

and the radius to the fourth power in equation 9. Before 

analysis of the model behaviour is presented, the results from 

some numerical simulations are presented in the next section 

to illustrate the behaviour of the model. In particular, the 

effects of both feedback parameters on the model behaviour 

are investigated. 

III. NUMERICAL SIMULATIONS 

The full NO model is simulated using Matlab’s differential 

equation solver, ode15s, for a range of values for the model 

feedback parameters, all the time constants initially being set 

to one second for simplicity. The initial state of the model is 

taken to be somewhat perturbed from its steady state 

condition: it was found that the resulting behaviour is not 
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influenced by this initial condition, however, within a wide 

range of values. Figures 1 and 2 show the change in 

concentration, radius and flow with respect to non-

dimensional time for two combinations of the feedback 

parameter values. 

In the first case, the model settles back into its stable state, 

( )1,1,1 , but in the second, it settles into oscillatory behaviour 

about this point. It is found numerically that sustained 

oscillations occur when the product of α  and β  is equal to 

or greater than 2. As this product increases above this 

threshold, the oscillations increase in amplitude due to the 

strong nonlinearity of the model. The model behaviour 

appears to be determined largely by the product of α  and 

β . The shape of oscillations is also not very sinusoidal for 

large α  and β  values: again due to the strong non-linearity 

in the model. In practice such large oscillations will not be 

seen since the linear radius/concentration equation is likely 

to saturate strongly at extreme values, something that we do 

not consider in this model at this stage. It is also found that 

the frequency of oscillations seems to be fairly constant with 

both α  and β . 

IV. ANALYSIS 

 In this section the stability of the NO model is examined 

first before the necessary condition for the existence of a 

limit cycle in the model is derived. An approximate 

analytical solution for the frequency of oscillation is then 

derived and compared with the true solution. Note that only 

the frequency is examined here, for two reasons: firstly that 

physiologically this is the parameter of greater interest and 

secondly the amplitude predicted by this model seems to be a 

significant overestimate. 

The linearised NO model about this equilibrium point can 

be written in the form: 
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where 3A  is given as: 
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The eigenvalues of equation 11 are then found from the 

solution to: 
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Since the general solution is very complicated, we only 

consider the case here where all the time constants are equal. 

Equation 12 then reduces to: 

0
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where αβ=K . The eigenvalues are thus: 
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The eigenvalues 2,1λ  can thus have a positive real part, 

which is a necessary, although, not sufficient condition for a 

limit cycle to exist. Note that 3λ  is always negative. Since 

the real part of 2,1λ  is positive when 2>K , the full NO 

model has a unstable equilibrium point when the product of  

α  and β  is greater than 2, in agreement with the numerical 

simulations. This indicates that the individual values of α  

and β  are not of importance, only their product. Note that 

the full NO model is linearised about its equilibrium point 

Fig. 2.  Model simulations for α = 2; β = 2. 

 

Fig. 1.  Model simulations for α = 1; β = 1. 
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here and thus its behaviour can only be approximated in this 

manner in the vicinity of its equilibrium point. 

A Fourier based approach is adopted here to obtain an 

approximate analytical solution of the frequency of 

oscillation. The radius, r, is thus assumed to have the 

following approximate form: 

)cos(1)( tAtr ω+= , (16) 

where A is the approximate amplitude and ω is the 

approximate frequency of oscillation. To derive an 

expression for ω, the full NO model (equations 7, 8 and 9) is 

used in linearised form. First, substitute equation 16 into 

equation 8 and then substitute the resulting expression into 

equation 7. Finally, equating the cosine and sine terms to 

zero in equation 9 (Jordan and Marshall, 1999) and 

eliminating αβ, gives: 

fRC

fRC

τττ

τττ
ω

++
=2

. (17) 

If all the time constants are equal, then τω 32 = . Note 

that this result for frequency is independent of α and β. The 

plot of actual frequency of oscillation, taken from the 

numerical simulations, with respect to αβ for both β=1 and 

β=2 with all time constants equal to 1 second is shown in 

Figure 3. 

The theoretical prediction is in good agreement with the 

numerical results, the maximum error between theoretical 

and simulation results being less than 5%. Given the very 

approximate nature of this model, this seems to be a very 

useful result for frequency. Note that the frequency is 

determined by all 3 time constants equally. If one time 

constant is much smaller than the other two, then the 

resonant frequency becomes very large, i.e. the oscillations 

become very slow. In the limit as one of the time constants 

tends to zero, the frequency tends to infinity, i.e. the 

oscillations disappear. 

V. CONCLUSION 

We have presented a very simple, yet effective, model for 

the instability in the flow-NO coupled system. However, 

since NO will obviously vary in both space and time, a more 

detailed model will be required. This will also be valuable in 

determining the values of the feedback parameters and time 

constants, which are as yet unknown in the context of this 

model. The effect of pressure changes on the stability of 

model thus will be examined in a separate paper, to 

investigate the coupling between oscillations in pressure and 

radius/concentration. In particular, any forced oscillations 

could prove to be of considerable importance. We then plan 

to link this model to a myogenic model to investigate the 

stability of the coupled system. 
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Fig. 3.  Frequency of oscillations: theoretical prediction against 

numerical simulation results 
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