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Abstract— Genetic screen has been facilitating molecular
geneticists to analyze mutants that produce certain phenotypes.
However traditional methods for behavioral phenotype screen
of mutant Caenorhabditis elegans rely on human observers and
therefore are subjective and imprecise. This work dedicates
a model to quantify and analyze the worm behavior using
automatically-tracking and time-coded images. We have delved
into the following questions: (1) how to achieve simplified worm-
shape representation, (2) how to describe worm locomotion,
(3) how to obtain frequent locomotion patterns and then
representative behavioral patterns, and (4) how to discover in-
teresting behaviorial actions within a representative behavioral
pattern. Since the methodologies focus on rigorous image-based
behavioral screening and phenotyping, the proposed methods
should be trustworthy for behavior analysis of tiny organisms
based on their microscopic video frames.

I. INTRODUCTION

Since it is introduced by Sydney Brenner [1] in 1976,
C.(Caenorhabditis) elegans, as a model organism, has been
widely employed for solving fundamental issues in neuro-
science [2][3]. C. elegans’s simple nervous system controls
a rich variety of significant behaviors such as uncoordinated
locomotion, drug chemosensory response, and mechanosen-
sory response, which provide important channels to under-
stand the relationship between genes and behaviors. How-
ever, distinctive abnormal behaviors among different species,
particularly in some more complex behaviors, such as lo-
comotion, are often subtle and complex, therefore making
long-time naked-eye observation imprecise and subjective.

In the last a half decade, schools of researchers have
been dedicating their works to computerized tool design for
image-based automatic C. elegans analysis. One group [4]
proved that a subset of discrete features abstracted from a
comprehensive feature set (94 morphological and locomotion
features) is sufficient to discriminate 6 (1 wild type, 5
mutants) types of animals. Later the same group [5], enlarged
the feature set (253 features) and demonstrated that pat-
terns of phenotypic similarity identified by natural clustering
closely paralleled the functional similarities of the mutant
gene products. Further refinements [6] of the system even
allowed distinct behaviors, such as foraging, to be included
in the parameter set. The typical output of these systems
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is a classifier supported by a subset of features and their
calibrated measurements. However, those discrete features,
like ’Avg head brightness’, ’Maximal tail thickness’, and
’Local head and tail movement ratio’, are more suitable
to be biological keys for taxonomy than direct behavioral
phenotype for neurobiology. Another group [7] proposed an
automated system for measuring nematode sinusoidal move-
ments with such parameters as body bend extent, amplitude
and wavelength. Behavioral phenotypes are demonstrated
by comparing of those less perceptive parameters, which
need further explanations and interpretations. Our work
targets on designing an automatic behavioral screen model
by comprehensively depicting and analyzing worm shape
and locomotion over a prolonged time period using intuitive
homogeneous parameters. These parameters can be used
either in scoring a population of worms for a particular
phenotype, might be done in large scale chemical or genetic
screens, or for quantifying phenotypes or even describing
phenotypes hitherto thought of as being distinctive from the
wild type. To achieve the above target, we carried out the
following designs:

• A worm Auto-tracking and image processing subsys-
tem, which captured and processed image sequences
into simplified worm-shape form, as shown in Fig.
1 (A), (B), and (C). The details can be seen in our
previous work [4][8].

• A worm shape model and a locomotion model, as
shown in Fig. 1 (D) and Fig. 2, which define a concise
worm-shape representation and a hierarchical worm
locomotion model. It will be discussed in section 2.

• Locomotion pattern mining and behavioral phenotype
screening, which provide methodologies of quantitative
worm locomotion mining and behaviorial analysis. It
will be discussed in section 3.

II. MODELING WORM SHAPE MORPHOLOGY
AND LOCOMOTION DYNAMICS

A. An (Orientation, Scale, and Translation)-impervious
Shape Descriptor

Although it is a simplified form, a worm Skeleton Point
Sequence (SPS) is still not efficient and convenient for shape
representation and comparison due to animal’s orientation
arbitrariness and length variability. In addition, it is com-
putationally burdensome to directly mine skeletons, each of
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Fig. 1. The image frame sequence shows a wild-type animal is turning left. A. Image sequence samples captured from worm auto-tracking and imaging
subsystem. The worm image was trimmed to the smallest axis-aligned rectangle, and saved as eight-bit grayscale data with frequency of 2Hz. The coordinates
of the center of mass of the worm in the tracker field are also saved. B. Binary images after processing graylevel image with binarization, closing operation,
and isolated-object removing. C. Skeleton images after thinning and pruning operation. D. Worm-shape depicted by even-sampled points from a skeleton
in absolute reference frame. E. The regenerated worm shapes from their BASes, which shows BASe is feasible for describing worm shapes.

Fig. 2. Hierarchical locomotion descriptor and locomotion comparison. A. In the rectangle, a (k + 1)-frame locomotion is represented by a hierarchical
structure. B. Locomotion comparison between two (k + 1)-frame locomotions is carried out of their counterparts in the direction of arrow.

which contains around 130 pixels in our experiment.

SPSi =


xi1, yi1

xi2, yi2

· · ·
xim, yim

 ESPi =


x̂i1, ŷi1

x̂i2, ŷi2

· · ·
x̂in, ŷin

 (1)

Li =


li1
li2
· · ·
li(n−1)

 =


x̂i2 − x̂i1, ŷi2 − ŷi1

x̂i3 − x̂i2, ŷi3 − ŷi2

· · ·
x̂in − x̂i(n−1), ŷin − ŷi(n−1)

 (2)

Bi = [αi1, αi2, ..., αi(n−2)] , where (3)

αij = λij arccos
lij · li(j+1)

‖lij‖‖li(j+1)‖
and

λij =
{
−1 lij × li(j+1) ≥ 0
1 lij × li(j+1) < 0

Here we design Bend Angle Series expression (BASe):
an (Orientation, Scale, and Translation)-impervious shape
descriptor. As shown in (1), (2), (3) and Fig. 1 (A)-(E), an
animal’s posture/shape of a frame i is represented by a (n−2)
bend-angle series as Bi = [αi1, αi2, ..., αi(n−2)], where αij
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is a deflection angle formed by lines Li(j) and Li(j + 1).
Li(j) is connected by points ESPi(j) and ESPi(j + 1),
which are evenly sampled from head to tail of the skeleton
point sequence SPSi. More generally, SPSi can be obtained
from a worm contour by traversing it from head or tail end
in clockwise (or anticlockwise) manner. It is noted that the
head and tail recognition scheme can be seen in our previous
work [8].

B. Hierarchical Locomotion Descriptor and Comparison
Scheme

Animal locomotion is a superimposition of worm-mass
displacement and worm-shape variances, they can be stud-
ied by a decoupled way. Since the worm-shape variances
manifest the main part of worm behaviors, it is the target of
following discussion, and the term of locomotion refers to
shape variance in the following parts.

1) Hierarchical Locomotion Descriptor: we propose a
locomotion descriptor based on n-order finite differences,
which represents continuous shape variances or locomotion
in a hierarchical structure.

LDk
i = f(Bi, Bi+1, ..., Bi+k) (4)

= [4kBi,4k−1Bi, ...,41Bi,40Bi], where

4kBi =
k∑

i=0

(r
k)(−1)k−rBi+r = 4k−1Bi+1 −4k−1Bi

A (k + 1)-frame locomotion starting from frame Bi can
be exactly represented by a (k + 1)-element vector, as it
is expressed in (4), and shown in the Fig. 2. The locomotion
can also be represented in the following forms:

LD0
i :[∆0Bi+k, ∆0Bi+k−1, · · · , ∆0Bi+1, ∆0Bi]

LD1
i :[∆1Bi+k−1, ∆1Bi+k−2, · · · , ∆1Bi, ∆0Bi]

· · ·
LDk

i :[∆kBi, ∆k−1Bi, · · · , ∆1Bi, ∆0Bi]

As shown in Fig. 2 blue rectangle, LDk
i has the favorite

property of describing locomotion from the view of global
to local: ∆kBi determines the global variance of all the k+1
frames, ∆k−1Bi gives changes of first k frames, . . ., ∆1Bi

decides the differences the first two fames, and ∆0Bi is the
original starting fame. But the other forms do not have this
property.

2) Hierarchical Locomotion Comparison: The distance
between two (k + 1)-frame locomotions starting from Bi

and Bj respectively can be compared through a hierarchical
computing structure by calculating each similarity of the
corresponding order of differences from global to local if
necessary, as in (5).

If two locomotions are identical, then they must be similar
from global variance to local details. Locomotion comparison
procedure should start from the highest k-order differences
comparison, if they are same, then the comparison goes to
lower (k − 1)-order of comparison; otherwise they do not
have the same trend from that level, which means they are
different locomotions. These kinds of comparison continues
until jumping out from a lower-order differences comparison

for their dissimilarity, or passing the final-step comparison
of 0-order differences for their similarity. The latter declares
the similarity of the two locomotions.

Dist(LDk
i , LD

k
j )

= f(Bi, Bi+1, ..., Bi+k)− f(Bj , Bj+1, ..., Bj+k)

=


4kBi − 4kBj

4k−1Bi − 4k−1Bj

· · ·
40Bi − 40Bj

 (5)

III. MINING FREQUENT LOCOMOTION PATTERN AND
DISCOVERING INTERESTING BEHAVIORAL ASSOCIATION

A Frequent Locomotion (FLm) pattern is described as a
segment of time-indexed frames (a video clip) that observed
from a image sequence (a video unit), and the segment (clip)
may also be found in the same or other image sequences
(video units) with a certain frequency. A FLm pattern is
defined as following:

Definition 1: (Neighbor Locomotion ) Given a locomotion
LDk

i , its neighbor locomotion within a radius of rε is defined
by Nrε

(LDk
i ) = {LDk

j : Dist(LDk
i , LD

k
j ) ≤ rε}.

Definition 2: (Frequent Locomotion) A locomotion LDk
i

is a Frequent locomotion if it meets the following condition:
| Nrε(LDk

i ) |≥Minpt.

A. Mining Frequent Locomotion Patterns

This task aims at breaking the locomotion dataset of all
assay species into locomotion patterns, each of which is a
FLm pattern, and the members of a pattern may come from
one or multiple worm species.

For clustering the locomotion dataset into FLm patterns,
we proposal a top-down hierarchical separating and regulat-
ing scheme, as shown in Fig. 3. For instance of grouping
5-frames’ behaviorial patterns, 1) the highest order, here 4-
order, differences are compared, and the locomotions are
clustered into different sub-clusters, each of which has its
own global changing tendency, 2) the step 1 continues on the
3-order differences, until the 0-order of differences. With this
process going on, the locomotion are regulated from global
to local, from coarse to fine into different pattern groups.

We use a density-based clustering method to implement
the hierarchical separating procedures. The FLm pattern
here is the locomotion with Minpt=4 neighbor locomotions
within the radius of rε=3, which are decided by using
heuristic k-dist(LDk

i ) method.

B. Ranking Frequent Locomotion Pattern

The rank to a FLm pattern is an uniqueness or distinctive-
ness measurement of a FLm pattern to a given species. The
uniqueness measurement is carried on with respect to both
intra-species frequency and inter-species scarcity as shown
in (6). ωi,Cj represents the rank of a FLm pattern i to a
class (species) j , and it is determined by two factors. One
factor is LDfk

i,Cj
, which is the normalized frequency of

locomotion LDk
i in the class Cj . The other is scarcity factor

measured by inverse ratio between the number of classes
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Fig. 3. Hierarchically clustering locomotions into frequent locomotion
patterns. Minpt and rε of each level are decided by heuristic statistics.

Cfi that contain LDk
i and the total number of classes nc in

a given experiment. A locomotion pattern with high rank to a
species, is called a representative behavior to that species. A
representative behavior of wild type is shown in Fig.4. Our
temporal datatset contains 5 species, around 30,000 5-frame
locomotions.

wi,cj = LDfk
i,cj
× log(

nc

Cfi
), where (6)

LDfk
i,cj

=
nLDfk

i,cj∑
lεCj

LDfk
l,Cj

C. Behavior Screen and Correlation Analysis

Continued to above issues, behavior screen and
correlation analysis here are designed to find, within a
representative behavior, which sub-behaviors (actions) leads
and dominates the following sub-behaviors. For a (k+1)-
frame representative behavior P k+1

LB ={Bi, Bi+1, ..., Bi+k},
there are potentially k leading sub-behavior LSBhv={
{Bi}, {Bi, Bi+1}, ..., {Bi, Bi+1, ..., Bi+k−1}},
and the k correspondingly following sub-behavior
FSBhv = {{Bi+1, Bi+2, ..., Bi+k}, ..., {Bi+k}}. Such
two measurements as Confidence(LSBhv ⇒ fSBhv) and
Correlation(LSBhv ⇒ FSBhv) are used to extract the
interesting rules, and the j-th rule {LSBhv(j)⇒ FSBhv(j)}
is measured as in (7) and (8). The rules with high confidence
and positive correlation are regarded as interesting rules, and
only the leading sub-behaviors from interesting rules are
the dominating sub-behaviors. Similarly, the consequences
between sequential behaviors also can be discovered.

Behavior screen and correlation analysis here are used to
pinpoint those sub-behaviors (key actions), which is hoped to
directly mirror the known similarities in molecular function
and cellular site of action of the mutant gene products.

IV. CONCLUSION

We have presented a model to quantitatively analyzing
locomotion patterns of the C. elegans using automatically
tracking and time-coded image sequences. The intuitive
worm shape and locomotion representation and their hi-
erarchical comparing structure are proved to be efficient

Fig. 4. A representative behavior abstracted from n2.

for high-throughput worm locomotion mining purpose. And
the locomotion ranking and behavior screen schemes set a
step toward automatic behavioral screen to Caenorhabditis
elegans.

Confidence(LSBhv(j)⇒ FSBhv(j))

=
P ({Bi, Bi+1, ..., Bi+k})
P ({Bi, Bi+1, ..., Bi+j−1})

(7)

Correlation(LSBhv(j)⇒ FSBhv(j))

=
P (LSBhv(j)

⋂
FSBhv(j))

P (LSBhv(j))P (FSBhv(j))
(8)

=
P ({Bi, Bi+1, ..., Bi+k})

P ({Bi, Bi+1, ..., Bi+j−1})P ({Bi+j , Bi+j+1, ..., Bi+k})
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