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Abstract— A method for automatically identifying and clas-
sifying hyperactivated spermatozoa trajectories is described.
This physiologically-based computerized algorithm captures the
motion behavior of sperm during hyperactivation. A novel
Minimum Bounding Square Ratio (MBSR) algorithm classifies
spermatoza as hyperactivated, transitional or progressive. Clas-
sification boundaries were established on selected trajectory
data from a single stallion and then tested on random trajec-
tories of sperm from other stallions. MBSR classified sperm in
a robust and effective manner.

I. INTRODUCTION

An analysis of semen motility parameters is readily ac-
cessible and widely used assay for male infertility in human
andrology clinics and in veterinary practices [4]. A prereq-
uisite for sperm to fertilize an oocyte, a spermatozoon must
undergo several biochemical changes, called capacitation
[3], [7]. As part of the capacitation process the sperm
motility pattern changes from a linear progressive motion
to an erratic star-spin swimming pattern, called hyperac-
tive motility. (Fig.1)[9]. Computer-assisted sperm analysis
(CASA) devices can quantitatively assess sperm motility
parameters as defined by the World Health Organization
(WHO)[8], [1], including the percentage of motile cells in
a sample as well as evaluation of the motions of individual
cells, including sperm curvilinear velocity (VCL), average
velocity (VAP) and straight path velocity (VSL). However
these parameters fall short in determining what hyperactive
motility is or how many sperm in a sample possess this
type of motility. Previously, investigators have attempted
to classify hyperactivated sperm using WHO parameters
and reported that hyperactivated sperm exhibited increased
VCL [2]. The main drawback to this method is the absence
of effective thresholds between classes. Therefore, a new
method is proposed to identify and classify hyperactive
sperm based on describing the change in their motion from
progressive to erratic sperm movement. The classification is
based on interpreting changes in the sperm trajectory as a
search pattern.
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Fig. 1. Sperm Trajectories Classification examples, progressive (A,B),
hyperactivated (C,D)

II. OBJECTIVES

The objective of this research was to develop and apply
a robust algorithm which is capable of detecting changes
in spermatozoa motility patterns and then to classify the
sperm movement as being either hyperactive, transitional or
progressive.

III. MATERIALS AND METHODS

A. Specimen Collection and Data Sets

Specimen from fresh stallion ejaculates were used to
obtain motility data. The seminal plasma and dead cells in
each ejaculate were removed by centrifugation and the sperm
suspended in a diluent which maintains sperm viability to
approximately 20 ·106 sperm/ml. This sperm concentration
was chosen to minimize the number trajectories that would
overlap with each other. Subsamples of 6 µl were analyzed
using a Hamilton Thorne IVOS system for 0.5 s at 60 Hz.
The resulting output file consisted of the x, y coordinate data
pairs (x0, y0) ... (xn, yn) for each trajectory.

B. MBSR algorithm

Rather than attempting to explain and computationally
identify the infinite number of different shapes of hyperac-
tivated sperm tracks, we interpret the erratic movements as
a search pattern of the spermatozoa to reach the oocyte for
fertilization. We define a search area of the trajectory Ahull
as the envelope of the set of trajectory points. Contrary to
the convex or concave contour shape of a set of points, a
sperm trajectory is more snake− like and the trajectory can
overlap itself. We decided to represent the trajectory area as
a set of joint convex hulls to preserve as much as possible of
the motility pattern. If the trajectory search area is Ahull and
AMBS the minimum bounding square exploration region
enveloping the trajectory (Fig.2), Ahull is computed as the
sum of joint convex hulls, as a reasonable approximation of
the are covered area by the sperm trajectory,
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Ahull =
h∑
i=1

Ai (1)

where h is the number convex hulls and Ai the i − th
hull. Due to its geometric properties, a progressive sperm
track will therefore return a small Ahull whereas Ahull from
the trajectory of a hyperactivated sperm will have a larger
value. The optimal number of hulls h was experimentally
determined by plotting the average of five typical star-shaped
hyperactive and linear progressive trajectories, respectively
(fig. 1 A, B, D). The goal was to maximize the area for
hyperactive tracks, without including the center area of a
star-shaped trajectory. For progressive tracks, the goal is to
minimize Ahull. Fig. 3 shows the relationship of trajectory
area and number of connected hulls. At hull = 1, a single
convex hull, the area of the hyperactivated tracks is over-
estimated by including the center portion. With increasing
h ≤ 4 the trajectory area is better described, however h > 4
produces increasing voids in the chain of convex hulls.
Similarly for 1 < h < 4, the progressive half-moon shaped
tracks are overestimated until h ≥ 4, where the trajectory
area changes little. Given the goal of maximizing Ahull for
hyperactive sperm while minimizing Ahull for progressive
sperm and given that h can only be an integer, h = 4 is
the best candidate to describe the trajectory area for both
hyperactivated or progressive sperm.

Next we can calculate AMBS by taking the largest side
of the bounding rectangle of the trajectory to form a square.
AMBS =`
max(Θ) {xmax (TΘ)− xmin (TΘ) , ymax (TΘ)− ymin (TΘ)}

´2 (2)

Where (xmin, ymin, xmax, ymax) are the extreme x− and
y− coordinates of a trajectory and TΘ is the trajectory T
rotated through the angle 0 ≤ Θ ≤ π

2 . Choose Θ to maximize
the larger side of the rectangle. The consideration of rotated
trajectories makes AMBS independent of the trajectories’

connected 4-part convex hull
Trajectory Search Area Ahull

A
MBS

I
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sperm trajectory

trajectory with computed minimum
bounding square

exploration region

Fig. 2. MBSR calculation. I: original trajectory; II: Calculation of Ahull;
III: Ahull within AMBS .
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Fig. 3. The dependency of the number of convex hulls and resulting trajec-
tory area. Plotted are the average of five typical ’star-shaped’ hyperactivated
and five progressive trajectories. The arrow at hull = 4 denotes the optimal
number of hulls.

orientation relative to the artificial CASA axis. Finally, to
express the search efficiency of a spermatoza, take the ratio
of the trajectory hull area Ahull and exploration region,
AMBS .

MBSR =
Ahull ∗ 100%

AMBS
(3)

C. Model Parameter Calibration

We utilize three sperm motion classifications: hyperacti-
vated, transitional and progressive sperm. The MBSR model
parameters were calibrated on a training set of 40 randomly
selected hyperactivated trajectories and 40 progressive sperm
trajectories that were visually classified by experts in the
field. Transitional sperm trajectories were not included, be-
cause the identification guidelines of transitional sperm tra-
jectories vary substantially from investigator to investigator
[6]. Therefore, we decided to define our own margins for this
classification group. Each training set was run through the
MBSR algorithm with an incrementally increasing MBSR
threshold. The number of detected tracks were noted. Fig. 4
shows the detection sensitivity as a function of MBSR. The
MBSR was increased until all trajectories of the progressive
training set were detected, at 11%. The reverse was observed
on the hyperactivated training set, where initially all tracks
were identified and a declining detection rate was seen at
approximately 10.5%. It is reasonable to use the intersection
of both curves with a small margin of 5% for transitional
trajectories. This small margin is justified, although neither
training set contained transitional trajectories, the existence
of this classification has been described by investigators [6],
[5]. According to the training data, we defined the margins
as: Progressive trajectories: MBSRp < 8.5; Transitional:
8.5 ≤ MBSRt ≤ 13.5; Hyperactive tracks: MBSRh >
13.5.
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Fig. 4. Normalized MBSR Classification Boundaries. Based on a progres-
sive (n = 40) and hyperactivated (n = 40) training data set. Margin were
set to ±2.5% around the curve’s intersection at ∼ 8% MBSR. Progressive
trajectories: MBSRp < 8.5; Transitional: 8.5 ≤ MBSRt ≤ 13.5,
Hyperactive tracks: MBSRh > 13.5; Units are in %.

D. Test Data

The training data consisted of 40 selected hyperactive and
40 progressive tracks, while the test data set was composed
of four typical CASA laboratory recordings from one sperm
droplet from each of two stallions (different from the stallion
used for the training data). The droplets contained 18, 21, 52
and 47 trajectories (138 total). To keep the test data realistic,
no further sub-selection was performed. This set was clas-
sified visually by experts to contain 29 hyperactivated, 25
transitional and 71 progressive trajectories. Thirteen tracks
were either too small or considered unclassifiable (table I).

hyperactivated transitional progressive
29 25 71

classified total rejects Total Tracks
125 13 138

TABLE I
EXPERT CLASSIFIED TEST DATA

E. Evaluation

In addition to evaluating the MBSR algorithm with the
test data set, we also compared the data retrospectively
to the VCL thresholds that have been used to identifiy
hyperactivated sperm previously.
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Fig. 5. Diffusion matrix of the MBSR classification effectiveness. Hyper-
active=red, transitional=yellow and progressive=green

IV. EXPERIMENTAL RESULTS

We evaluated the effectiveness of the MBSR algorithm
by determining the number of correct classifications, false
positives and false negatives on the set of 138 trajectories.
Tracks were excluded if either the human experts or the
MBSR algorithm threshold filter of V CL ≥ 50 µm/s,
rejected it.

The MBSR algorithm correctly classified 93.1% (27) of
the hyperactive trajectories, 60.0% (15) of the transitional
trajectories and 98.57% (70) of the progressive trajectories
(Fig. 5). MBSR produced 32.0% (8/25) false positives,
where MBSR classified transitional sperm trajectories as
hyperactive and two false negatives 6.9% (2/29) for the same
category. More importantly, no hyperactivated trajectories
were misclassified as progressive, or vice versa.

Using VCL values to classify hyperactive motility, the
method used currently to indicate hyperactivity, did not
perform as well as MBSR (Fig. 6). The threshold to match
the MBSR performance (95 percentile) results in a loss of
almost half of the progressive tracks. Also, the threshold to
match the performance for progressive tracks, results in a
loss of almost 50% of the hyperactivated trajectories when
using VCL.

V. CONCLUSION AND DISCUSSION

The goal of this study was to develop an algorithm that
would automatically classify spermatoza trajectories with
comparable or better results than the current VCL threshold-
ing or human expert classification. MBSR proved to perform
better than VCL hyperactivity classification. At the same
time the problem of classifying transitional sperm trajectories
crystallized. While MBSR produced a high classification
rate of > 93% and > 98% for hyperactive and progressive
sperm, respectively, 32% of transitional sperm were falsely
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Fig. 6. VCL of Test data in hyperactive, transitional and progressive
sections. The horizontal lines denote the detection rate of the MBSR
algorithm. Note: There is no possible VCL threshold setting to achieve
a similar or better result. To capture as many hyperactivated trajectories
as the MBSR algorithm would immediately exclude one quantile of the
transitional tracks and almost half of the progressive tracks.

classified as hyperactive. A retrospective examination of
these misclassified transitional sperm trajectories uncovered
a limitation of classifying transitional sperm trajectories
by the experts in the field. Recognizing the difficulty of
transitional sperm trajectory classification and to minimize
ambiguity of the training data set, the experts in the field
were instructed to classify only into hyperactive and pro-
gressive sperm. Remaining sperm trajectories fell into the
transitional category. Retrospectively, these 8 false positive
sperm trajectories could well have been classified by the
experts as hyperactive instead of transitional. This raises
the question about the validity of the current guidelines
for experts for transitional sperm classification. Even with
these difficulties, MBSR generated better results also for the
transitional sperm trajectories than VCL (Fig. 6). Moreover,
interpreting the shape of the motility trajectories as a search
pattern does not restrict the algorithm to a limited number
of hyperactivity patterns and mimics human behavior during
sperm classification. Since each individual sperm sets its own
exploration region, MBSR is scale invariant and works even
on samples with lower motility.
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