
  

  

Abstract—Flow cytometry (FCM) is widely used in health 
research and is a technique to measure cell properties such as 
phenotype, cytokine expression, etc., for up to millions of cells 
from a sample. FCM data analysis is a highly tedious, 
subjective and manually time-consuming (to the level of 
impracticality for some data) process that is based on intuition 
rather than standardized statistical inference. This study 
proposes a pipeline for automatic analysis of FCM data. The 
proposed pipeline identifies biomarkers that correlate with 
physiological/pathological conditions and classifies the samples 
to specific pathological/physiological entities. The pipeline 
utilizes a model-based clustering approach to identify cell 
populations that share similar biological functions. Support 
vector machine (SVM) and random forest (RF) classifiers were 
then used to classify the samples and identify biomarkers 
associated with disease status. The performance of the 
proposed data analysis pipeline has been evaluated on 
lymphoma patients. Preliminary results show more than 90% 
accuracy in differentiating between some sub-types of 
lymphoma. The proposed pipeline also finds biologically 
meaningful biomarkers that differ between lymphoma sub-
types.  

I. INTRODUCTION 
LOW cytometry (FCM) is widely used in health 

research and in treatment for a variety of tasks, such as 
in the diagnosis and monitoring of leukemia and lymphoma 
patients, providing the counts of helper-T lymphocytes 
needed to monitor the course and treatment of HIV 
infection, the evaluation of peripheral blood hematopoietic 
stem cell grafts, and many other diseases [1-5].  

In FCM, intact cells and their constituent components are 
tagged with fluorescently conjugated monoclonal antibodies 
and/or stained with fluorescent reagents and then analyzed 
individually by a flow cytometer. In the instrument, 
hydrodynamic forces align the cells and the fluorescent 
molecules in/on each cell are excited by passing through the 
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laser light at speeds exceeding 70,000 cells per second.  
Each cell passing through the beam scatters the light 
providing an indication of cell shape and size, and 
fluorescent chemicals found in the cell or attached to the cell 
may be excited into emitting fluorescent light to provide 
information on the physical and chemical characteristics of 
each individual cell. Typically, each data file generated by a 
flow cytometer contains measurements of cell properties 
(including phenotype, cytokine expression, and cell-cycle 
status) in up to 20 dimensions for each cell for up to millions 
of individual cells [1]. 

It is widely recognized that one of the limiting aspects of 
FCM technology is the analysis of the data [2, 5]. FCM data 
analysis involves two major components: (1) identifying 
homogeneous cell populations (traditionally known as 
gating) that share a particular biological function and (2) 
finding correlations between identified cell populations and 
clinical diagnosis or survival rate.  

Typically, finding homogenous cell populations among 
FCM data involves selection of groups of cells based on the 
graphical representations of one or two characteristics of 
cells. Conditional on the selection of cell populations, 
further gating may be done using the other characteristics of 
cells.  Figure 1 shows a two-stage gating example of an 
FCM data. At first, the cells that share common 
morphological properties (i.e., size and shape) are selected 
(e.g., cells in ellipsoidal region in Figure 1(a)). Cell 
populations are usually defined using a '+' or a '–' symbol to 
indicate whether a certain cell fraction expresses or lacks a 
specific molecule. Therefore, in the next step, the selected 
cells are examined to identify the ones that express certain 
markers by dividing the space into four quadrants 
representing ‘–/–’, ‘+/–’, ‘–/+’, and ‘+/+’ expressed cells 
(Figure 1(b), for example ‘+/+’ cells in upper right quadrant 
of Figure 1(b) represent the cells that are ‘+’ for both Kappa 
and CD19 markers). Properties of ‘+’ and ‘–’ expressed cells 
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Figure. 1. Manual FCM data analysis procedure  
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such as their percentages are then used to identify different 
pathological/physiological states.  

Subsetting (gating) is typically accomplished “manually” 
by using proprietary software provided by instrument 
manufacturers. This approach is a highly tedious, subjective, 
and time-consuming (to the level of impracticality for some 
datasets) process that is based on intuition rather than 
standardized statistical inference [5]. In addition, finding 
correlations between identified cell populations and clinical 
diagnosis or survival rate is also performed manually and 
suffers from the same problems mentioned above. To date, 
only rudimentary statistical and bioinformatics tools exist to 
manage, analyze, present, and disseminate FCM data; yet, 
there is considerable demand for development of appropriate 
tools. 

Finding cell populations in data in an automated fashion 
(automated gating) can be utilized by employing clustering 
algorithms. Various approaches such as k-means [6], neural 
networks [7], multidimensional binary trees [8], and model-based 
clustering [9] have been used in the context of gating FCM data. 
However, these approaches only focus on the first stage of FCM 
data analysis that identifies cell populations.  

This paper proposes the first completely automatic FCM 
data analysis pipeline (i.e., one without manual intervention) 
that identifies FCM cell populations, facilitates disease 
diagnosis and identifies biomarkers that correlate with 
disease. The proposed data analysis pipeline uses a previously 
developed model-based clustering approach [9] for 
identification of cell sub-populations in FCM data and 
utilizes feature selection and classification approaches to 
identify biomarker changes and classify the samples.  

As FCM has assumed an important role in the diagnosis 
of lymphoma [10, 11], we show preliminary results of 
applying this pipeline to differentiate between selected sub-
types of lymphoma and identify biomarkers that contribute to 
differential classification of lymphoma sub-types.  

Lymphoma is a cancer that originates from lymphocytes. 
According to the Revised European American Lymphoma 
(REAL) classification, i.e., the most recent classification of 
lymphoma, lymphoma can be divided into many sub-types 
based on morphology and cell lineage, each with differing 
prognosis. The REAL classification has received worldwide 
acceptance and is used by most haematopathologists and 
haemato-oncologists today. Folicular lymphoma (FOLL), 
mantle  cell  lymphoma  (MCL),  marginal  zone  lymphoma  

  
TABLE 1. COMPARATIVE IMMUNOPHENOTYPIC SIGNATURE OF SELECTED 

SUB-TYPES OF LYMPHOMA 
Selected Lymphoma Sub-Types for This Study 

Marker 
FOLL MCL MZL SLL DLBCL 

CD20 + + + + + 

CD5 − + − + − 

CD43 − + − + +/− 

CD10 + − − − − 

CD23 −/+ − − + +/− 

(MZL), small lymphocytic lymphoma (SLL), and diffuse 
large B-cell lymphoma (DLBCL) are examples of sub-types 
of lymphoma according to the REAL classification. Table 1 
shows immunophenotypic features helpful in the differential 
diagnosis of the above-mentioned sub-types. For example, 
SLL differs from MZL in the expression of CD5 and CD23 
markers. While SLL samples are CD5+ and CD23+, MZL 
samples are CD5- and CD23- [12].  

II. MATERIALS AND METHODS 

A. Data Description 
FCM data generated from biopsies of lymph nodes of 438 

lymphoma patients were available for analysis. These data 
were generated at the British Columbia Cancer Agency, 
Vancouver, Canada between 2002 and 2007.  

Samples were divided into seven tubes and stained with 
different monoclonal antibodies conjugated with three 
fluorescent markers, namely, fluorescein isothiocyanate 
(FITC), phycoerythrin (PE) and phycoerythrin-Cy5 (PE-
Cy5). Tube 1 contained CD45-FITC, CD14-PE and CD19-
PE-Cy5 markers. Tube 2 contained isotype controls IgG1-
FITC, IgG1/IgG2a-PE and IgG1-PE-Cy5 markers. Tube 3 
contained CD10-FITC, CD11c-PE, CD20-PE-Cy5 markers.  
Tube 4 contained CD5-FITC, CD19-PE and CD3 PE-Cy5 
markers. Tube 5 contained CD7-FITC, CD4-PE, CD8-PE-
Cy5 markers.  Tube 6 contained FMC7-FITC, CD23-PE and 
CD19-PE-Cy5. Tube 7 contained kappa-FITC, lambda-PE 
and CD19-PE-Cy5 markers. Each of the seven tubes of each 
sample were then run through a Beckman Coulter Cytomics 
FC500 flow cytometer to quantify the amount of antibodies 
on the cells. 

B. Proposed Data Analysis Methodology 
The main objective of this paper is to propose a fully 

automatic pipeline for FCM data analysis; a task that is 
currently performed manually. More specifically, this paper 
focuses on introducing a data analysis pipeline that is useful 
for differentiating between disease sub-types based on FCM.  

Figure 2 shows the overall diagram of the proposed 
automatic data analysis pipeline. The details of each 
component are explained in the following.   

Step 1: the model-based clustering approach adapted to 
identify cell populations in FCM data [9] is used to identify 
morphologically similar cell populations in the 2-
dimensional (2-D) plot of forward light scatter (FSC) against 
sideward light scatter (SSC) (shown in Figure 3(a)). FSC 
and SSC parameters measure the size and granularity of each 
cell. The model-based clustering approach in [9] provides a 
unified framework to answer central questions such as: How 
many cell populations are there? How should we deal with 
outliers? These questions are fundamental to FCM analysis 
where one does not usually know the number of cell 
populations and where outliers are frequent. The method in 
[9] is based on t-mixture models with Box-Cox 
transformation to handle the issues of transformation 
selection and outlier  identification,  and  uses  the  Bayesian  
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Figure 2. Overall diagram of the proposed automatic data analysis pipeline 
 
Information Criteria (BIC) to determine the number of cell 
populations (i.e., clusters) present in the data. 

Step 2: Once the cell populations (clusters) are identified, 
a specific cluster is picked and the cells in that cluster are 
observed  in  other  dimensions  (shown  in  Figure 3.b).  The 
density distribution of data for each dimension is calculated 
by kernel density estimation approach (using Gaussian 
kernel). After smoothing, the location of the minimum of the 
density distribution is calculated. The locations of the 
minima are used as thresholds to divide the 2-D space into 
four quadrants representing ‘–/–’, ‘+/–’, ‘–/+’, and ‘+/+’ 
cells. Different features representing the percentage of cells 
in each quadrant, the mean of each quadrant, standard 
deviation across each dimension, etc are derived as features.  

As we do not know which cluster in “Step 1” carries 
information about the label of the sample, e.g. disease status, 
the above procedure is repeated for each cluster and cluster 
combination. Furthermore, each of the seven tubes are 
analyzed following the above procedure resulting in 
generation of many features which represent the different 
characteristics of cell populations in each tube.  

Step 3: Since the generated features in “step 2” may 
consist of some features that do not have discriminatory 
information, a feature selection scheme is used to discard the 
uninformative and redundant features. The output of this 
stage can either be used directly to identify biomarkers 
associated with disease diagnosis or used to label the 
samples (e.g., healthy vs. disease). For feature selection, we 

use maximum relevance minimum redundancy feature 
selection technique (MRMR) [13]. A common practice for 
feature selection is to select top rank features based on their 
relevance to their label (i.e., class). A deficiency of this 
simple ranking approach is that the selected features could 
be correlated among themselves. MRMR technique aims at 
not only selecting features that are relevant to the labels but 
also aims at reducing the redundancy of the selected 
features. In other words, this technique expands the 
representative power of the selected feature set by selecting 
features that are maximally dissimilar to each other and at 
the same time have high mutual information with the 
classes.  

Step 4: Using the selected features in the previous step, a 
classifier is developed to label (classify) the samples.  This 
stage, in fact, identifies any correlation between feature 
changes and label of the samples. In classification, a 
prediction model is built based on the known samples 
(referred to as the training set), which is used to make future 
predictions about unclassified samples. Two classification 
schemes based on Random Forest (RF) [14] and Support 
Vector Machine (SVM) [15] are implemented in this stage.  

SVMs map input vectors to a higher dimensional space 
where a maximal separating hyperplane is constructed. Two 
parallel hyperplanes are constructed on each side of the 
hyperplane that separates the data. The separating 
hyperplane is the hyperplane that maximizes the distance 
between the two parallel hyperplanes. Special properties of 
the decision surface ensure high generalization ability of the 
learning machine [15]. 

RFs are a combination of tree predictors such that each 
tree depends on the values of a random vector sampled 
independently and with the same distribution for all trees in 
the forest. The generalization error of a forest of tree 
classifiers depends on the strength of the individual trees in 
the forest and the correlation between them [14]. 

III. RESULTS 
The proposed FCM data analysis pipeline is used to 

differentiate between sub-types of lymphoma. Using the 
model-based clustering approach in [9] and according to the 
Bayesian Information Criteria (BIC), four cell populations 
(clusters) which have similar size and shape (based on FSC 
and SSC parameters) were found. Using the identified cell 
populations, the features (as explained in “Step 2” of data 
analysis) are extracted. This procedure is repeated for each 
of the seven tubes and for different cluster combinations.  

To evaluate the performance of the proposed pipeline, the 
patients are split into two randomly selected groups namely 
training- and test-sets.  The data of training-set are used to 
select the informative features (by using MRMR feature 
selection technique) and train the classifier, while the data 
of the test set are used for performance evaluation. This 
procedure is repeated 100 times to reduce the bias of the 
results over a specific training-set.  

Step 1: 
Identification of 
cell populations 

(gating) 

Step 2: Extract 
statistics 

(features) for 
each gate 

Step 3: Feature 
selection 

Step 4: 
Classification 

(a) (b) 
 

 
 

Figure 3. (a) Step 1 of data analysis, (b) Step 2 of data analysis 
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Table 2 shows the mean performance of the proposed data 
analysis pipeline in differentiating between some lymphoma 
sub-types using SVM and RF classifiers. The performances 
of SVM and RF classifiers were not significantly different 
according to the student’s t-test. The last column of Table 2 
shows the top biomarkers identified by the proposed pipeline 
that contribute to the differentiation between lymphoma sub-
types. For example, for differentiating between SLL and 
FOLL sub-types, from the 21 candidate markers analyzed, 
the developed pipeline automatically identifies features 
related to CD10, CD5 and CD23 as the markers with 
discriminatory information. These results are in line with 
established biological knowledge (see Table 1) and show 
strong evidence that the proposed FCM data analysis 
platform can extract biologically meaningful features from 
the data without manual intervention. 

IV. CONCLUSIONS 
In practice, gating and classification of FCM samples are 

performed manually. In this paper, preliminary results on the 
application of a completely automatic pipeline for FCM data 
analysis of lymphoma samples have been presented. The 
proposed data analysis platform automatically selects cell 
populations, extracts various features representing the 
identified cell populations, identifies informative features 
and eventually classifies the samples. Results of the 
evaluations of the proposed analysis platform show 
classification accuracies in the range between 80% and 
95.3% in differentiating between some sub-types of 
lymphoma. More importantly, the proposed system 
identifies biologically meaningful biomarkers that differ 
between lymphoma sub-types.  

The designed pipeline is, nevertheless, only capable of 
performing binary classification, i.e., it can differentiate 
between two sub-types of lymphoma. Our future direction 
would be expanding this pipeline to perform a multi-class 
classification task so that we can determine any sub-type of 
lymphoma from a FCM data. Moreover, further 
improvements are still needed to increase discrimination 
accuracy of the classifier. For example, results for 
differentiating between some sub-types is still around 80% 
that is not enough to be used as a diagnosis tool in practice. 
Meanwhile, the proposed data analysis platform can still be 
useful  in  the  sense  that it  can  guide  the  manual  analysis  

 
TABLE 2. A TABLE DESCRIBING THE FEATURES THAT ARE EXTRACTED FROM 

THE FIRST STAGE 
Mean accuracy Discrimination task 

RF SVM 

Top selected 
markers 

SLL vs. Other Sub-
types  

89% 88% CD23 

SLL vs. FOLL 92.6% 92.0% CD10, CD5, CD23 
SLL vs. DLBC 90% 90% CD23, CD10, CD5 
SLL vs. MZL 88% 88% CD23, CD5 
SLL vs. MCL 95.3% 92.6% CD23, CD19 

MCL vs. DLBC 81% 80% CD5, CD11c 

procedure by suggesting the possible diagnosis of the 
sample. 

In the proposed data analysis platform, finding and 
selecting cell populations among FCM data rely on 
automatic analysis of the 2-D representations of the multi-
dimensional data. This process ignores the high-dimensional 
information of the FCM data, which can lead to missing 
biologically important cell populations. Future directions 
would be utilizing the multi-dimensional characteristics of 
the FCM data. Moreover, it is possible to incorporate a-
priori biological information to guide the automated data 
analysis and hence improve the performance. For example, 
if the focus is only on lymphocyte cell population in a 
specific dataset, using biological information of the place of 
lymphocytes we can guide the algorithm to pick these cells.  

Development of an automated FCM data analysis 
platform will greatly facilitate both basic research and 
clinical applications in medical/agricultural areas that 
depend upon this technique. This study is an initial step to 
demonstrate that a completely automatic FCM data analysis 
is possible. However, testing the performance of this 
platform on different FCM data is necessary in future 
studies.  
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