
  

  

Abstract— A computational model linking stochastic neural 
innervation processes and functional neuromuscular excitation 
is developed to investigate peripheral nerve interface based limb 
prostheses. A means of classifying the virtual nerve data is 
presented by using both a time domain feature set and a spike 
detection algorithm. Some intrinsic parameters in recording 
and classification, such as brachial fiber activation, analysis 
window length and feature selection, are discussed to achieve 
good neural signal recognition. Recommendations for optimal 
performance are made, with regard to information content and 
window length. 

I. INTRODUCTION 
URRENTLY, commercially available artificial limbs 
include mechanical cable prostheses, myoelectric 

prostheses, and mixed control by both. Because these 
conventional prosthetic limbs are limited by the problems of 
insufficient function, and slow and unnatural control, 
researchers and engineers have been developing many new 
devices and control methods for decades. Since the available 
recording sites on residual muscles may be limited after 
amputation, myoelectric signals (MES) provide inadequate 
motor information, and more functions need to be restored as 
the amputation level increases. Moreover, muscle fatigue and 
electrode location sensitivity may change the features of the 
MES. On the other hand, neural signals are not as affected by 
fatigue levels, are highly reproducible, and are less 
susceptible to interferences. As such, they may be considered 
as an alternative source for extracting control signal in 
prosthesis. A brain-computer interface (BCI) method [1-3], in 
which electrodes were implanted into the cranial cavity of a 
primate, was used to provide motor information from the 
intracranial EEG signals which were generated from the 
motor area of the cortex [2]. This procedure is clinically risky 
and can only record electrical activities of the motor neurons 
in a very localized neighborhood, and very a few human 
studies [3,14] have been reported. Using multiple electrodes 
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to collect EEG signals from the scalp avoids these problems, 
however the surface EEG has a low signal-to-noise ratio and 
is difficult to interpret.  
 Because of the above difficulties a peripheral nerve 
interface approach is proposed for powered prosthetic control. 
In this approach, based on the unique structure of 
somatotopic organization [4-5] in the peripheral nerve system, 
motor information is extracted from the descending nerve 
fibers rather than the brain. The motor information is 
concentrated in the peripheral nerves due to their small 
diameters, and the electrodes can obtain most of the 
movement information with little risk. Intrafascicular 
electrodes for neural signal recording are available, such as 
the Utah slanted electrode array (USEA) [6-7]. 
 Although the detection of both cortical and peripheral 
neural information has been investigated in a number of 
experiments on animals, the reports of neural control based 
prostheses with human subjects are rarely seen, due to the 
complexity of human trials. As a result, in this work we 
developed a neuromuscular model for simulation of a 
pattern-recognition based controller using a peripheral nerve 
interface. It offers a foundation for investigations involving 
innervation of muscles by selective excitation of peripheral 
nerves. Furthermore, we discuss a few factors, including the 
contraction duration, analysis window length, and the axonal 
recruitment, which may affect classifying different 
contractions with data acquired from simulated peripheral 
nerve signals. Since the virtual implantation levels were 
chosen at or above the elbow, this model is suitable for 
investigation of neural control prostheses with above-elbow 
amputation. 

II. SIMULATION AND ANALYSIS METHODS 

A. Development of the Model 
1) Model Simulation: We developed the computational 

model [9] according to the relevant functional branches 
within three major brachial limb nerves, the median nerve 
(MN), ulnar nerve (UN), and radial nerve (RN). These are 
selected according to six wrist and hand contractions: hand 
closing (HC), hand open (HO), wrist flexion (WF), wrist 
extension (WE), wrist pronation (WP), wrist supination (WS). 
Although the articulations of different muscles and muscle 
groups are synergistic with multiple agonists involved, as a 
starting point we modeled the fascicles innervating only 
prime mover muscles for each contraction. The required 
musculature is sufficient to satisfy the independent control of 
a two degree-of freedom wrist and one degree-of freedom 
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prosthetic hand [8].  
2) Apparatus: We modeled the Utah Slanted Electrode 

Array (USEA) to acquire virtual nerve signals from simulated 
functional nerve fascicles which innervate the intrinsic 
muscles [10]. Electrodes are placed at the elbow and 1/8 arm 
length distal to the level of medial epicondyle, where the 
relevant nerve fascicles innervating the required muscles of 
forearm can be clearly observed [9]. This approach avoids the 
limitations of crosstalk, signal attenuation of deep muscles, 
and lack of control sources in high level amputations. 
3) Signal Classification: A simple linear discriminant 
analysis (LDA) classifier was applied to discriminate 
intended motions of the wrist and hand in these simulated 
data during volitional intent. A time domain (TD) feature set 
[12] and a spike count (SC) feature [11] have been 
investigated in previous studies. Both feature sets showed 
distinctive patterns when fibers near the detection electrode 
were activated to execute a certain movement. Above six 
wrist and hand contractions were six classes in the 
classification. Figure 1 shows the representations of each 
feature during the classification of one good virtual channel. 

 For SC, it is easy to see the clear evidence of the 
all-or-none nature of neural activation. Mean absolute value 
(MAV) and waveform length showed the expected 
differences between periods of contraction-on and 
contraction-off, because neural action potentials (APs) 
modulated the value and variability of waveform amplitude 
voltage. Multiple spike waveforms could add more zero 
crossings (ZC) and slope sign changes because the frequency 
of neural signals is higher than the background noise that 
mainly consists of EMG signals [13], but it is also clear these 
features are comparatively noisy. Since SC and TD have their 
own unique patterns, both can perform neural signal 
classification. 

B. Parameters of the Model 
Intrinsic factors existing in the virtual recoding and signal 

analysis, such as the duration of motions, analysis window 
length in classification, and the effect of nerve fiber activation, 
can affect the classification performance when using 
information in the brachial nerves. 

1) Duration of Contractions: It is essential that sufficient 
data be provided to adequately train a classifier. It is therefore 
important to know how long an isometric contraction should 
last. The contraction duration was based on a virtual subject 
in a typical scenario, which incorporated 50% activated nerve 
fibers and 40% encapsulated electrodes (intrafascicular 
electrodes will be encapsulated to a varying amount with a 
visible fibrous tissue growth [10] due to the physiological 
immune response).  

The virtual subject was assumed to perform five trials (a 
trial was considered to be a consecutive execution of six 
motions, with the order of HC, HO, WE, WF, WP, and WS) 
in the training session. The contraction duration of these five 
trials was varied over 1 sec/contraction, 2 secs/contraction, 5 
secs/contraction, 7 secs/motion, 10 secs/contraction to 
generate a training set. A single, 2 second test set was also 

 
generated for assessment of classification performance. 

2) Activation of Nerve Fibers: The number of active fibers 
has a strong influence on the classification performance 
because it determines the information abundance. 

Thus the simulation work took different recruitment levels 
(10%, 20%, and 50% of fibers within the entire fascicle) to 
represent different levels of isotonic voluntary contraction.  

3) Analysis Window Length: Pattern recognition was 
performed on an analysis window from which features can be 
computed and provided to a pattern classifier. It is desirable 
to have the analysis window size as small as possible, as this 
determines the response time of the system in providing a 
decision of movement intent. On the other hand, fewer data 
will result in a larger feature estimation error [12].  

III. SIMULATION RESULTS 

A. Effect of Motion Duration 
The initial investigation focused on the effect of the duration 
of each contraction, with the purpose of determining the 
amount of data required to adequately train the classifier. 
From Figure 2, the result shows that there is no significant 
difference among the contraction durations considered (t-test: 
p>0.05), classified by both of spike count (SC) and time 
domain (TD) features. As shown in the plot, the accuracy was 
not compromised when the duration was short (the vertical 
bar representing the standard deviation over test sets). In the 
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end, the duration was chosen to be 2 seconds on each motion, 
in order to reduce computing and training time. This selection 
will be implemented in all subsequent data collection 
sessions.  

B. Effect of Analysis Window Length 
The investigation was performed for analysis window 

lengths over 10 to 150 ms at a signal-to-noise ratio (SNR) 
level of 5 dB (the SNR is defined as the log ratio of the nerve 
signal peak value to the EMG RMS value, and expressed in 
dB). The results are illustrated in Figure 3. 

It is desirable to have the analysis window size small, while 
achieving adequate classification performance. Consequently, 
the effect of window length on classification accuracy was 
carefully examined in this study. Data were acquired from a 
case of 50% fiber recruitment and 40% electrode 
encapsulation. From Figure 3, the analysis window length has 
a strong influence on classification performance, for both SC 
and TD features. When the length ranged from 10 ms to 60 
ms, the classification accuracy improved tremendously. 
Beyond 80 ms, the performance of both the TD and the SC 
did not increase significantly, with performance nearing 
80-90% accuracy. This is a very encouraging result, as 80 ms 
is an exceptionally good response time, much less than most 
current EMG-based systems, which are on the order of 
100-300 ms. The analysis window length of 80 ms was also 
used throughout the analyses in this project. 

 

 

 
C. Effect of Nerve Fiber Activation 
In Figure 4, the mean and standard deviation of 

classification accuracy over 10 test sets are shown for each of 
the recruitment levels and feature sets. The classification 
when 50% of the nerve fibers were activated produces the 
highest classification accuracy, approximately 80%. This is to 
be expected, as a larger number of active neurons provide 
more information about each class, while the classifier may 
not be appropriately trained at lower levels of active fibers. 
Therefore, the user would be required to perform reasonably 
high levels of contraction in an application in order to achieve 
a good classification performance.  

IV. DISCUSSIONS 
This model is appropriate for use in many applications, 

because it was constructed with published physiological data. 
Realistically however, the articulations of different muscles 
and muscle groups are synergistic, involving multiple 
agonists. As a preliminary interface for research on 
neuromuscular process, only the fascicles innervating prime 
mover muscles for each contraction were modeled to simplify 
the study. The authors expected that this will satisfy the 
fundamental fascicular innervation pattern, and the main 
observations will hold.  

With respect to the duration of each motion, results showed 
2 seconds for each motion is adequate and it is therefore 
recommended to save computing and training time. The 
degree of nerve fiber activation which is associated with 
information content is a primary factor in classification 
performance. Although the results suggest that a strong 
contraction should be used to activate more brachial fibers for 
abundant information, this is not always possible or 
convenient, and certainly limits the versatility of the methods.  

As discussed in this work, the feature set and the analysis 
window size also influence the classification performance. It 
was shown that an analysis window length of 0.08 seconds 
offers a good compromise between accuracy and response 
time. The classification performance between alternative 
feature sets, SC and TD did not show large differences, 
however, they will be investigated in the future, according to 
their implemention, reliability and optimizations (such as 
threshold selection and noise immunity ) . 
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Fig. 2.  Comparison of classification accuracies with different 
contraction durations. The label ‘accy_feature’ here means 
classification accuracy for SC and TD features. 
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Fig. 4.  Effect of different nerve fiber activations in training. 
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V. SUMMARY 
A novel peripheral nerve model is developed, 

incorporating stochastic neural innervation processes to offer 
a useful interface for investigations on functional 
neuromuscular excitations and applications and preparations 
before human experiments. 

The work assessed the accuracy with some parameters in 
data acquisition and recognition. The results suggest that 
sufficient neural information from viable active nerve fibers 
in a recording is the critical factor in classification decision 
making. The information abundance is associated with the 
active fiber numbers and motion duration. Signal analysis 
parameters (analysis window size, feature set) will affect 
performance as well. The choices of feature set, SC or TD, 
both showed distinctive performance in classification. A 
relatively short analysis window (0.08 seconds) is possible 
while maintaining good performance.  

This model has provided preliminary analysis for 
peripheral nerve interface-based neural control of upper limb 
prostheses. Refinement of this model may allow an optimal 
observation in anticipation of implantation in human subjects 
in the near future. Other intrinsic factors will be further 
investigated, including the sensitivity to noise and the 
compatibility of recording tools. 
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