
 

 

 

  

Abstract—The Vestibulo-Ocular Reflex (VOR) plays an 
essential role in the majority of daily activities by keeping the 
images of the world steady on the retina when either the 
environment or the body is moving. The modeling and 
identification of this system plays a key role in the diagnosis 
and treatment of various diseases and lesions, and their 
associated syndromes. Today, clinical protocols incorporate 
mathematical techniques for testing the functionality of 
patients’ VORs through the analysis of the patients’ responses 
to various stimuli.  

We have developed a new tool for simultaneous 
identification of the two modes of the horizontal VOR, using a 
novel algorithm. This algorithm, HybELS (Hybrid Extended 
Least Squares), is a regression-based identification method 
tailored for hybrid ARMAX (AutoRegressive Moving Average 
with eXogenous inputs) models, which can also be used for the 
identification of other neural systems. In the context of the 
VOR, MELS (Modified Extended Least Squares) has been 
proposed previously for the identification of vestibular 
nystagmus dynamics, one mode at a time. It also involved 
searching for segment initial conditions to avoid biased results. 
Our hybrid approach identifies the two modes simultaneously, 
and does not require estimation of initial conditions, since it 
takes advantage of state continuity in the transitions between 
fast and slow phases. The results on experimental VOR in the 
dark show that HybELS outperforms MELS in several aspects: 
It proves to be more robust than MELS with respect to the 
system order used for identification, while resulting in more 
accurate estimates in almost all contexts as well. Furthermore, 
due to the hybrid nature of the method, its calculations are 
algebraically more compact, and HybELS turns out to be much 
less computationally expensive than MELS.  

I. INTRODUCTION 
HE oculomotor system plays an essential role in the 
majority of our basic daily activities, e.g. walking, 

driving, reading, etc. It keeps the images of the world steady 
on the retina, when either the environment or the body is 
moving, and also enables us to track visual targets, or switch 
between targets [17]. A few decades ago, in order to gain 
more insight into oculomotor subsystems, scientists 
proposed mathematical models, and were able to make 
predictions of how they would behave in different situations 
[1], [2], [3], [16]. Later, identification techniques helped 
them comment on which subsystems’ degradation would 
yield the observed symptoms in patients [4]. Today, clinical 
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protocols and commercial mathematical techniques are 
available to test the functionality of patients’ oculomotor 
subsystems, e.g. Vestibulo Ocular Reflex (VOR), smooth 
pursuit, saccades etc., usually with specific tests for each [5].  

In this work, we present a new tool for the simultaneous 
identification of the two modes of the horizontal VOR using 
system identification techniques. We make use of theories 
for hybrid systems, since the oculomotor system is a hybrid 
system which switches between fast and slow modes, 
producing ocular nystagmus [6], [7]. However, traditionally, 
this fact is ignored and the system is studied purely in one of 
the modes [1], [8]. This is usually done, in the slow phase 
case for example, by considering the envelope of the eye 
velocity response, and replacing fast phase segments with 
interpolated slow phase segments. It has already been shown 
by Galiana [9], [10] that while this approach can be a 
starting point for studying the system, it is by no means 
sufficient and if used alone, leads to biased estimates of 
reflex dynamics with weak clinical relevance. 

In order to demonstrate the necessity of a hybrid approach 
to the problem of oculomotor system identification, the step 
response of a low-pass system is shown in Fig. 1 on the left. 
On the right, we can see the response of a hybrid system to 
the same input. This hybrid system’s behavior is identical to 
the system on the left in one mode, and has a high-pass 
behavior in the second mode. One can see that at all 
switching instants, transient responses are evoked, and if one 
looks at the envelope of the response on the right, it does not 
correspond at all to the response of the non-switching system 
(This type of switching behavior is common in oculomotor 
responses e.g. the eye position response to a step head 
acceleration input). Therefore, using the envelope of the 
switching signal to identify the parameters of the low-pass 
mode of the system would clearly yield erroneous results. 
Unfortunately, the envelope of eye velocity in nystagmus is 
still used in the literature to identify slow phase 
characteristics [11]. 

 
Fig. 1.  Switching can induce initial conditions (ICs), enriching the response 

of a system. On the left, step response of a low-pass system is shown. On 
the right, the response of a hybrid system to the same input is depicted. This 

response is much richer due to switching. 
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In this work, we propose a new method (HybELS: Hybrid 
Extended Least Squares) for the identification of the VOR, 
which respects the hybrid nature of the system. We will 
compare the performance of our method with that of MELS, 
a state of the art method for identification of a selected VOR 
mode (slow or fast) [12]. We will present results on 
experimental data for the VOR in the dark.  

II. METHODS 

A. System Identification – Our Approach 
Our approach to the identification of the oculomotor 

system is a hybrid parametric approach. Due to the short 
length of data segments in ocular nystagmus, non-parametric 
identification of this system with current mathematical tools 
is not feasible [15]. Parametric identification methods have 
been previously used for hybrid system identification, in the 
context of the oculomotor system [9], [12]. We explore these 
methods further and develop HybELS as a hybrid 
regression-based batch method, and compare the results with 
those of MELS, most recently introduced for VOR dynamics 
identification. 

B. HybELS  
Assuming linearity and time-invariance, we can write the 

input-output equation of our hybrid system (in a specific 
mode) in the Laplace domain as: 

              (1) 
Or in the z-domain as: 

         (2) 
Assuming zero initial conditions in a nystagmus segment, 

the equivalent of this equation in the discrete time domain is: 
        (3) 

If there are non-zero initial conditions, then the equation 
becomes: 

 .           (4) 
It is very important to consider the effects of non-zero 

initial conditions in the response, because as can be seen in 
Fig. 2, they can completely change the appearance of the 
response, especially here where segment duration can be 
short compared to the system’s time constants. Hence 
ignoring initial conditions would lead to erroneous estimates 
of mode dynamics in any switched response. 

 
Fig. 2.  Demonstration of initial condition effects on the response of a 

system. 

If we further assume the presence of output noise, we will 
have: 

             (5) 
where  

,               (6) 
and e is the output noise. Notice that even though e is white 
noise at the output, it appears as colored in (5), when using 
the noisy output for regression.  

In MELS, the above equation was written for all the 
segments of (pre-classified) data belonging to the same 
mode, and each mode of the system was identified by 
solving a regression problem, and iterating until 
convergence. As such, the parameters corresponding to the 
global dynamics of the system and the initial conditions for 
every segment were identified.  

HybELS is developed considering the fact that all 
segments of data (slow or fast) are continuous; hence, 
instead of estimating the initial conditions at every segment, 
one can use the final states in a previous segment as the 
initial conditions for the next.  

It is important to note that there exist different types of 
hybrid systems (Fig. 3). On the left, an example of a hybrid 
system is shown where the switching changes the whole 
subsystem to alternative control pathways. On the right, 
another example has been shown where the switching only 
changes the parameters of the system. While the former can 
have discontinuous states and dynamics, the latter has 
continuous states, but discontinuous dynamics. 

 
Fig. 3.  Two possible configurations of hybrid systems. 

Since our system is of the latter type [13], the output, eye 
position, and internal states remain continuous throughout 
the data record. Therefore, when identifying every segment, 
the history of the signal from the previous segment can be 
used instead of estimating initial conditions. This is 
demonstrated in Fig. 4. 

 
Fig. 4.  Demonstration of how the history of the signal can be used instead 

of estimating initial conditions for each segment. 

Therefore, instead of (4), we can write: 

 (7) 
And with output additive noise: 

 
                     (8) 
In order to find the parameters, we form the matrix Aj for 

the jth data segment: 
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   (9) 

We can then form the matrix equation: 

          (10) 

where  is the parameter vector corresponding to slow 
phases and  is the parameter vector corresponding to fast 
phases, or 

,                 (11) 
where  is the lumped parameter vector containing the 
coefficients of both modes. We solve this equation for the 
parameter vector iteratively: We start with =0, solve for , 
update  with the residual of the regression; then with the 
new  in place, we solve for  again. We repeat this 
procedure until convergence, as shown in the flowchart in 

Fig. 5.  
In this process, we ensure that the 
residuals are zero-mean white 
Gaussian. An example of the 
residuals’ distribution and spectrum 
are shown in Fig. 6. The number of 
steps needed in this example was 25. 

It is important to emphasize here 
that, as seen above, HybELS uses a 
hybrid formulation that solves for all 

of the coefficients of the system at 
the same time. This is not only compact and efficient in 
computation, but is more importantly very robust, because 
of its comprehensive analysis of the system behavior as a 
whole. 

 
Fig. 6.  Left: Power Spectrum Density of the residuals. Right: Amplitude 

Histogram of the residuals. 

III. RESULTS 
Our identification approach was first validated on 

simulated data to demonstrate its unbiased convergence to 
desired parameters [14]. We then compared the performance 
of linear HybELS with linear MELS on experimental data 
from VOR in the dark. As we will see shortly, the 
performances of HybELS and MELS in terms of 
identification are similar when the system order chosen for 
identification is low, but HybELS starts to outperform 
MELS as the order increases. The computational cost of 
HybELS compared to MELS is always lower by far. 

Comparison with MELS 
The VOR data is first classified into slow and fast phase 

intervals with a previously described algorithm [6]. A 
sample of the data is shown in Fig. 7.  

 
Fig. 7.  Experimental VOR in the dark data. 

To compare the performances of the two methods, we 
performed 20 pseudo Monte-Carlo trials as follows: At each 
trial, we picked a randomly chosen 10s record of data for 
identification, and a non-overlapping 5s record for 
validation. We then compared the results of the two methods 
when the order is set to one (Table I). As we can see, when 
we use low orders for identification (one pole in this case), 
both methods perform well in terms of prediction error, 
while HybELS is much faster.  

 
TABLE I 

COMPARISON OF MELS AND HYBELS ON PSEUDO MONTE-CARLO TRIALS 
Identification System Order = 1 MELS HybELS 

Number of Trials 20 20 
Sampling Rate 500Hz 500Hz 

Identification (Training) Data Length 10s 10s 
Validation Data Length 5s 5s 

Slow-Phase Mean RMS Prediction Error 2.1° 1.5° 
Fast-Phase Mean RMS Prediction Error  2.7° 2.4° 

Mean Elapsed Execution Time [3.2GHz Intel] .93s .16s 
As the identification order increases (two poles and a zero 

in this case), the number of parameters, and consequently the 
number of coefficients to be estimated increase 
tremendously for MELS, but not for HybELS. Doubling the 
order translates into adding one or two parameters to 
HybELS, but into more than doubling the number of 
coefficients for MELS; doubling the order in MELS means 
having to estimate one more initial condition for each 
segment, in addition to the dynamics-related parameters 
which have to be estimated. This and the fact that HybELS 
considers the system as a whole instead of isolated in one 
mode at a time, make HybELS faster, more robust, and more 
accurate than MELS in this context (see results in Fig. 8 and 
Table II). What is also interesting is that MELS performs 
even worse for the identification of fast phase dynamics 
given more degrees of freedom, while HybELS results 
remain robust.  

It is important to mention that the same data set is used for 
first and second order identification. Identical segment initial 
conditions are used for both methods to ensure fair 
comparison. Also note that both methods require, and are 
sensitive to, a priori classification of the data. 

Fig. 5.  HybELS flowchart. 
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TABLE II 
COMPARISON OF MELS AND HYBELS ON PSEUDO MONTE-CARLO TRIALS 

Identification System Order = 2 MELS HybELS 
Number of Trials 20 20 

Sampling Rate 500Hz 500Hz 
Identification (Training) Data Length 10s 10s 

Validation Data Length 5s 5s 
Slow-Phase Mean RMS Prediction Error 1.3° 1.1° 
Fast-Phase Mean RMS Prediction Error  4.6° 1.8° 

Mean Elapsed Execution Time[3.2GHz Intel] 2.1s .21s 
 

 
Slow phase -MELS 

 
Slow phase -HybELS 

 
Fast phase -MELS 

 
Fast phase -HybELS 

Fig. 8.  Infinite-horizon predictions on validation data. System order=2. 

IV. CONCLUSION AND FUTURE WORK 
In this paper, we introduced HybELS, a Hybrid Extended 

Least Squares method for hybrid system identification when 
state continuity is preserved, with particular application to 
the VOR. We compared its performance with MELS, a state-
of-the-art method, and showed with results on experimental 
data how HybELS outperforms MELS. This method is also 
extendable to include non-linearities and delays, and can be 
tailored for multiple-input cases, both of which can be 
developed as extensions to HybELS. 
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