
  

  

Abstract—In an electromyographic and muscle force 

(EMG-Force) model, the variability and uncertainty of the input 

muscle parameters increase the difficulty of assessing this type of 

model. In this study, a Monte Carlo method is used to evaluate 

the robustness and the sensitivity of an EMG-Force model, 

recently developed by our team, for two groups of simulations 

(constant and sinusoidal force contractions). Two existing 

criteria (EMG/force and force/force-variability relations) and a 

new criterion derived from this model (Root Mean Square error, 

ErrorRMS, between the force command and the generated force) 

are used to extract relevant simulations and obtain the optimized 

parameter ranges in constant force contractions, while only the 

new criterion could be valuable in sinusoidal force contractions. 

The comparison of obtained results from the two groups of 

simulations has shown that the new criterion can replace the two 

existing criteria in constant and sinusoidal force contractions to 

give rise to stable optimized input parameter ranges for the 

studied EMG-Force model. 
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I. INTRODUCTION 

LECTROMYOGRAPHY (EMG) and muscle force are 

considered as two critical tools in the assessment of 

skeletal muscle contraction because both of them reflect the 

level of muscle activation. However, as the EMG signal is 

influenced by many factors [1] and the muscle force cannot be 

measured directly [2], the EMG-Force models have become a 

principle method for studying the mechanisms of the relation 

between EMG and force in recent years. For this method, the 

selection of the input physiological parameter values is critical 

and it is important to obtain realistic simulated data that 

matches well with the experimental relationships. However, 

the variability and uncertainty of the parameters used in these 

models have increased the difficulty of assessing them. As the 

complete validation of these models needs to analyze 

multivariate interactions, multivariate Monte Carlo 
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simulations have been used to explore the sensitivity of model 

predictions to uncertainty and variability in some 

physiological parameters [3]. In this study, two criteria 

corresponding to two experimental relations (EMG/force and 

force/force-variability) were chosen to indicate the relevant 

simulations in order to optimize the input parameter ranges. It 

is important to note, however, that these two criteria are only 

applicable in the isometric contraction with constant force.  

In our study, we used the same Monte Carlo method to 

evaluate the robustness and the sensitivity of our recently 

developed EMG-Force model [4, 5] with two types of 

contraction force (constant and sinusoidal) by means of two 

previously noted criteria (EMG/force and 

force/force-variability relations) and a new criterion derived 

from our model (Root Mean Square error, ErrorRMS, between 

the force command and the generated force). The simulated 

results are discussed following the type of contractions. 

 

II. METHODS 

A. EMG-Force Model 

There are three principal components in the described 

model: 1) a recruitment pattern that gives the firing rate of 

each MU for a contraction force level, 2) the EMG signal 

simulation, based on the firing rate and the geometrical model 

of the spatial localization of each MU [4], and 3) the muscle 

force simulation, according to the firing rate and the generated 

force of each active MU [5]. 

1) MU recruitment pattern: An MU recruitment pattern 

(Fig. 1) provides the number of MUs activated and their firing 

rates in relation with the muscle force command P(t). P(t) 

represents the reaction force supplied to external loads [2]. It 

is defined by a percentage of the maximal voluntary 

contraction (MVC). We include in our muscle model two MU 

types, slow motor units (SMUs) and fast motor units (FMUs), 

with the same number of muscle fibers. Each MU type has its 

specific minimum and peak firing rates. As motoneurons 

innervating fast-twitch muscle fibers display shorter 

after-hyper-polarizations than those innervating slow twitch 

muscle fibers [6], both minimum and peak firing rates of the 

FMUs are modeled as higher than the ones of the SMUs. Once 

an MU is active, its firing rate increases almost linearly from 

the minimum firing rate (MFR) to the peak firing rate (PFR) 

with muscle force generation [7]. MUs are progressively 

recruited in an orderly sequence such that the SMUs are 

activated before the FMUs [8]. All MUs are recruited at a 
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certain force level (RR), between 30% and 90% of maximal 

voluntary contraction force (MVC), according to muscle type 

[9]. The firing rate of all MUs attains their peak value (PFR) at 

100% MVC. The recruitment threshold (RT) is the force level 

needed to recruit a new MU. RTi of the ith MU is modeled as 

follows [10]: 

i
N

RR

i eRT

ln

=           (1) 

where RR is the recruitment range, i.e. the recruitment 

threshold of the last activated MU in a muscle (30% - 90% 

MVC in our test), N is the number of MUs, and i is an index 

identifying the MU. 

2) EMG signal simulation: To simulate the surface 

EMG, the MUs are uniformly distributed within the muscle 

cross section. The muscle fibers are also located within each 

MU with a uniform distribution. In human muscles, the 

minimum firing rate generally ranges from 7 to 23 Hz, and 

peak firing rate from 14 to 50 Hz [7, 11]. Since the number of 

MUs and the number of fibers per MU vary in human muscles 

[12] and an MU can generally be considered to include 100 

fibers [13], to evaluate the behavior of most muscles in our 

limited computational time simulations, the number of FMU 

and of SMU in a muscle are independently assigned and 

varied from 250 to 600, while the number of fibers per MU is 

assigned from 30 to 100. The Rosenfalck model is used to 

simulate individual fiber electric activity [14]. Muscle fiber 

conduction velocity is assigned as a Gaussian distribution with 

mean value 3 to 4 m/s [15] and standard deviation 0.5 m/s. For 

a given  muscle, fast twitch fiber conduction velocity is greater 

than slow twitch fiber conduction velocity. The InterPulse 

Interval (IPI) of the motor unit firing is modeled as a Gaussian 

probability distribution function with a standard deviation 

between 10% and 30% of the mean IPI [16] (Table 1).  
 

 
Fig. 1.  MU recruitment pattern (PFRF, MFRF, PFRS, MFRS: peak and 

minimum firing rates of FMUs and SMUs respectively). In this schematic 

diagram, 4 SMUs (solid lines) and 1 FMU (dashed lines) are recruited at the 

muscle force level P(t). 

 

According to the MU recruitment pattern, the action 

potential train of each MU is obtained for a given muscle 

contractions. Depending on the thickness of the volume 

conductor (muscle, fat and skin layers), these signals are 

filtered by spatial transfer function [17] and added to give a 

total potential distribution on the skin surface, called output 

plan [4]. The recorded EMG is finally obtained by filtering the 

output plan with an electrode transfer function [17].  

3) Muscle force simulation: For each MU, we consider 

that the force generated by a single MU increases linearly with 

a positive slope αi relative to its firing rate (FRi) [5]. It is 

important to note that this modeling is a simplification of the 

experimental MU force-Firing rate relationship. Then, we 

obtain an output muscle force (Fm) which represents the sum 

of the active MU forces (FMUi= αi·FRi). All αi values can be 

also calculated with every recruitment threshold. When a 

measured muscle force P(t) is given, the number of active 

MUs and their firing rate are estimated by Fig. 1. Once all αi 

values are known, the generated force by the muscle Fm is 

calculated. 

 

B. Monte Carlo Method 

Twelve muscular parameters were explored in our study to 

analyze their influence on the simulated output of the studied 

EMG-Force model. All the parameters are shown in Table 1 

with their initial ranges. For each Monte Carlo simulation, a 

set of the parameter values were defined by random sampling 

from uniform distributions of each of the twelve parameters. 

Their initial ranges came from the experimental data as 

described in II.A.2. The simulated outputs (EMG and force 

signals) were computed at 1000 samples/s. To avoid carrying 

out many useless simulations and to save the computational 

cost, we adopted as in [3] a convergence test in our simulation 

for early simulation stopping.   

  

C. Simulation Procedure 

Two types of muscle force command were performed with 

the recent model and both commands began and ended with 

zero. One type of force was a 2 s command with three phases 

(0.3 s linear increase, 1.4 s constant and 0.3 s linear decrease). 

Four constant force levels (20%, 50%, 80% and 100% MVC) 

were simulated for each set of the parameters sampled from 

the initial ranges. The second force command was a 2 s 

sinusoidal command, i.e. the frequency of 0.5 Hz, with the 

maximum value of 20%, 50%, 80% and 100% MVC (Fig. 2).  

 

0 500 1000 1500 2000
0

50

100

150

P
(t

)
(%

M
V

C
)

0 500 1000 1500 2000
0

50

100

150

F
m

(t
)

(%
M

V
C

)

0 500 1000 1500 2000
-1000

0

1000

Time (ms)

E
M

G
(t

)
(A

U
)

1 s

 

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

Time (ms)  
 

Fig. 2.  Two types of force command (Left: constant command; Right: 

sinusoidal command; Upper: force command P(t); Middle: generated force 

Fm(t); Bottom: generated EMG(t)). 
 

Group 1 (Constant command): Force and full-wave 

rectified EMG were averaged over a 1 s window in the middle 

of the constant command, and SD of the force during this 
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period was considered as the force variability. Convergence 

was declared when there was a change lower than 2% in the 

running mean and coefficient of variation of EMG amplitude 

and force for the last 20% of the simulations [3, 18]. Note that 

each Monte Carlo simulation required convergence for every 

one of the four command levels. Two criteria were chosen to 

indicate a reasonable match between simulated and 

experimental EMG/force relationship: a slope <1.05 in the 

regression line between EMG and force; and force/ 

force-variability relationship: a slope of log-log regression 

line between SD and mean force between 0.75 and 1.25 [3]. 

However, as these two criteria are issued from experimental 

data with constant-force contraction [3], they are only 

applicable to the constant force command. In order to simulate 

the isometric contractions with a non-constant force, we 

define a new criterion. In the studied EMG-force model [5], 

there are two considered muscle forces (normalized by a ratio 

of their respective MVC values): the force command (model 

input, P(t)) and the generated force (model output, Fm(t)). It is 

hypothesized that the generated force follows the force 

command. Thus, the similar degree (Root Mean Square error, 

ErrorRMS) between these two forces could be considered as a 

new criterion. This new criterion is proposed to be used for 

non-constant force command. For that, the ErrorRMS value 

needs to be chosen so that most simulations meeting the new 

criterion are in the tolerance region determined by the two 

previous criteria (EMG/force and force/force variability 

relationships). This criterion is assessed by the success rate 

(the ratio of the number of the simulations satisfying the three 

criteria to the number of the simulations satisfying the new 

criterion).  

Group 2 (Sinusoidal command): To evaluate the 

convergence of Monte Carlo simulations in the condition of 

sinusoidal force command, an adapted criterion is proposed. 

Indeed, a fully-rectified EMG signal was smoothed by a 

4-order low-pass Butterworth filter with a cutoff frequency of 

8 Hz to obtain its envelope [19]. Convergence was declared 

when there was a change lower than 1% in the running 

coefficient of multiple correlation (CMC) of the EMG 

envelope and the force for the last 20% of the simulations at 

all four command levels. The criterion ErrorRMS refined with 

Group 1 data, was used to verify whether the optimized ranges 

were well stabilized for the sinusoidal command. 

 

III. RESULTS 

Simulation Group 1: The first Monte Carlo simulation 

series (Series 1) converged after 61 simulations. To ensure 

that most simulations chosen by the new criterion of the 

ErrorRMS lie within the tolerance region determined by the two 

previous criteria in each strategy, this new criterion was 

defined as the ErrorRMS values, computed from four command 

levels, lower than 3%. 18 simulations were selected based on 

this criterion, and all these 18 simulations met the three 

criteria (success rate: 18/18=100%) (Fig 2. upper). The 

second simulation series was then performed with the 

muscular parameter ranges optimized by these three criteria. 

Convergence was achieved after 169 simulations. There were 

138 simulations chosen by the new criterion ErrorRMS, and 133 

simulations met the three criteria (success rate: 

133/138=96.4%) (Fig 2. bottom).  
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Fig 2. Two experimental criteria (EMG/force and force/force variability 

represented by a blue frame) in the simulation (Upper: Series 1; Bottom: 

Series 2; Black point: simulation selected by the criterion of the RMS error). 

 

TABLE 1  

INITIAL AND OPTIMIZED INPUT PARAMETER RANGES IN THE 

EMG-FORCE MODEL 

Parameters Initial Optimized-Group1 Optimized-Group2 

RR (%MVC) 30 – 90  71 – 89 72 – 89 

Slow fiber CV(m/s) 3 – 4  3.0 – 3.8  3.0 – 3.8  

Fast fiber CV(m/s) 3 – 4  3.0 – 4.0  3.1 – 4.0  

SMUs number 250 - 600 250 - 590 250 - 590 

FMUs number 250 - 600 250 - 570 250 - 540 

Fibers number per MU 30 - 100 34 - 100 36 - 99 

VC of IPI  0.1 – 0.3 0.1 – 0.3 0.1 – 0.3 

Fiber length (cm) 4 – 16  6 – 16  6 – 15 

MFR of SMU (Hz) 7 – 23  7 – 20  7 – 20  

MFR of FMU (Hz) 7 – 23  8 – 23  9 – 23  

PFR of SMU (Hz) 14 – 50  14 – 41  14 – 41  

PFR of FMU (Hz) 14 – 50 27 – 48  27 – 48  

RR = recruitment range, CV = conduction velocity, VC = variation 

coefficient, MFR = minimum firing rate, PFR = peak firing rate. 

 

Simulation Group 2: The muscular parameter ranges 

optimized by Simulation Group 1 (2 series) were considered 

as the input ranges for Simulation Group 2. Convergence was 
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achieved after 32 simulations. According to the new criterion, 

there were 29 selected simulations.  

All twelve parameter ranges optimized after Group 1 and 

Group 2 are shown in Table 1. The optimized conduction 

velocity in the slow fiber is significantly slower than in the fast 

fiber after each group of simulations (p<0.001). There is no 

significant difference in all optimized parameters between 

Group 1 and Group 2 simulations (with p-value=0.05). The 

optimized ranges were not influenced by the modification of 

the contraction type, constant or sinusoidal force.  

 

IV. DISCUSSIONS AND CONCLUSIONS   

We have used a Monte Carlo method depicted in [3] to 

evaluate the robustness and the sensitivity of a recent 

EMG-force model [4, 5]. To differ from [3], a sinusoidal force 

command was evaluated in addition to a constant force 

command. For this purpose, new simulation convergence and 

selection criteria were proposed. For the constant force 

command, the new simulation selection criterion was used in 

addition to two previously used criteria [4, 18]. The obtained 

results demonstrate the accuracy of the new criterion in 

comparison to the existing ones. For the sinusoidal force 

command, the proposed criterion was able to select relevant 

input parameter ranges, by using the obtained ranges from 

simulations of Group 1 as  initial values. We observed a good 

match between the two optimized groups of ranges. This 

match was confirmed by a statistical test (p-value=0.05). This 

indicates that the new criterion can be used for optimization of 

input parameter ranges for both constant and sinusoidal force 

commands. The new criterion was able to speed the 

optimization of the input parameters, because the simulations 

satisfying the new criterion almost met all three criteria in 

Simulation Group 1 (>95%).  

We investigated in our study twelve input muscular 

parameters, which are known, for human experiments, as 

being able to influence the EMG and force production. We 

took into consideration the number and the conduction 

velocity of each MU type, the FMUs and the SMUs, because 

the effective parameter ranges of the two MU types often 

appear different from each other, for example the conduction 

velocity (Table 1). In particular, their contributions changed 

for different contraction types: for example, the range of the 

number of FMUs varied a little from the constant to the 

sinusoidal force command, while the range of the number of 

SMUs remained constant (Table 1). Among all twelve input 

muscular parameters, the MU recruitment ranges, as well as 

the peak firing rates of the SMUs and the FMUs, highly 

influenced our simulated results. This means that our model is 

sensitive to these parameters, which is in agreement with the 

results simulated by another EMG-force model [3]. However, 

as they vary according to the subject and to the muscle, it is 

also difficult to directly measure these parameters in vivo. In 

order to properly validate an EMG-force model by comparing 

it to the experimental results, it is important, as a first step, to 

completely optimize these input parameters so that stable 

ranges can be found for one or several command types. This 

was the primary goal of the proposed work.   
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