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Abstract— This paper addresses the issue of selecting optimal
spatio-spectral features, which is key to high performance
motor imagery (MI) classification that is in turn one of the
central topics in EEG-based brain computer interfaces. In
particular, this work proposes a novel method which first
formulates the selection of features as maximizing mutual
information between class labels and features. It then uses
a robust estimate of mutual information, within a filter-bank
and common spatial pattern feature extraction framework, to
select an effective feature set. We have assessed the proposed
method on both BCI Competition IV Set I and a separate data
set collected in our lab from 7 healthy subjects. The results
indicate the method is effective in selecting optimal spatial-
spectral features for classification.

I. INTRODUCTION

Selection of optimal spatio-spectral features constitutes the

kernel issue in motor imagery classification for EEG-based

brain computer interfaces (BCIs) [1], [2], [3], which allow a

user to interact with the environment through motor activity

in the brain alone, without using muscular output channels.

The discriminative spatio-spectral characteristics of motor

imagery EEG vary, considerably, from one person to another.

Thus, motor imagery classification relies on selecting an

effective set of EEG features in the vast spatio-spectral

feature space, while practically only a limited number of

examples (say, less than 100 trials) for an individual are

available.

The prevalent technique for extracting discriminant spatial

features is the common spatial pattern (CSP) method [4],

[5]. From recorded motor imagery data, it constructs spatial

filters which basically maximize the variance for one class

while at the same time minimize it for the other one. The

CSP usually works on bandpass-filtered EEG, i.e. a specific

rhythm, and captures a strong or attenuated rhythmic activity,

linking to ERD/ERS effects of motor imagery [2].

Simultaneous optimization of spatial filters and spectral

filters is needed for selecting effective features in the joint

spatio-spectral space. In [6], an algorithm was proposed to

optimize simple frequency filters (one tap delay) together

with spatial filters. Later on, an extension, termed CSSSP,

enabled simultaneous optimization of an arbitrary FIR filter

within the CSP analysis [7]. More recently, Wu et al. pro-

posed an algorithm termed ISSPL which directly optimizes
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spectral filters (FIR in spectral domain) to achieve maximal

classification accuracy [8].

In [9], an alternative method, termed FBCSP (filter-bank

common spatial pattern), introduced a combination of filter

banks and CSP. It first processed EEG waveforms with an

array of band-pass filters (filter banks), and used CSP to

construct spatial filters for each frequency band. Importantly,

the method used a maximal mutual information criterion

to select a feature set, which is in turn classified using a

naı̈ve-Bayesian Parzen window algorithm. That method has

been validated in the BCI Competition IV, where it served as

the basis for the winning algorithms in all three EEG cate-

gories (see http://ida.first.fhg.de/projects/bci/competition iv/

results/index.html).

This paper presents an extension to FBCSP. It formulates

feature extraction&selection as maximizing mutual infor-

mation between class labels and features. Importantly, it

introduces a robust estimate of mutual information to the

FBCSP framework, as well as an efficient feature selection

algorithm. To validate the method, we have tested it on both

BCI Competition IV Set I (human data sets only) and a

separate data set from 7 healthy subjects collected in our

lab. The results indicate the method is effective in selecting

optimal spatial-spectral feature sets. And, it also consistently

outperforms the FBCSP method in terms of classification

accuracy on the test data sets.

It’s worthwhile to mention that a separate article [10] also

proposed a mutual information approach (termed ITFE) for

extracting features for motor imagery classification. That

differs from this work in two aspects: first, it does not

address the issue of selecting spectral filters; second, its

approximation models were validated in multi-class settings

only, while for two class paradigms, the authors showed that

ITFE would approximate CSP. In contrast, this paper not

only addresses spectral filters together with spatial filters, but

also demonstrates that the proposed method yields superior

performance to both CSP and FBCSP on the test data sets

(i.e. unseen data from the training phase).

II. MAXIMUM MUTUAL INFORMATION FORMULATION

FOR FEATURE SELECTION

Let’s denote a trial of motor imagery in multi-channel EEG

by x(t) = {x1(t), x2(t), . . . , xL(t)} where L is the number

of channels. According to [9], it is first processed by an

array of band-pass filters (i.e. filter banks) to extract specific

rhythm activities. For each filter bank (say, the m-th bank), a

CSP is constructed that consists of Nw spatial filters wmn,
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n = 1, . . . , Nw, each linearly combines the filtered multi-

channel EEG into a new waveform.

Consider the waveform generated by the m-th band-pass

filter (hm) and the associated n-th spatial filter (wmn). We

define its feature (amn) as the logarithmic mean power.

amn = φ(x, hm,wmn) = log

[

1

T

∫ t0+T

t0

[

w
T
mn (x ⊗ hm)

]2
dt

]

(1)

Then the whole feature set {amn} is comprised of M×N
features from the M band-pass filters and the M×N spatial

filters. The problem becomes how to select an effective

subset of {amn} to represent the discriminative information

between motor imagery classes.

To address this problem, we consider that the features

from a feature subset η constitute a random vector Aη. The

corresponding class label (discrete value from 1 to Nc) is

a random uni-variate denoted by C. A particular feature

vector and the class label are denoted respectively by aη

and c. From information theory, the mutual information [11]

between Aη and C is

I(Aη, C) = H(Aη) −H(Aη|C) (2)

where H(Aη) denotes the entropy of the random feature

vector, and H(Aη|C) is the conditional entropy

H(Aη|C) = −
Nc
∑

c=1

∫

a

p(aη, c)log(p(aη|c))daη

= −
Nc
∑

c=1

H(Aη|c)P (c) (3)

The mutual information is a quantity that measures the

mutual dependence of the two variables. And maximum

mutual information (MMI) criterion has been established as

the basis for discriminative learning procedures in various

machine learning techniques such as hidden Markov mod-

els machines. Following the same principle, we define the

objective of selecting the optimal set of features as below.

max
η
I(Aη|C) (4)

There are two problems towards achieving the objective:

1. how to robustly estimate the mutual information given

a limited set of samples, 2. how to efficiently select the

optimal feature subset from a large number of possibilities

(theoretically
∑MN

k=1

(

MN

k

)

). In the next section we will

propose a solution to address the two problems.

III. FEATURE SELECTION ALGORITHM WITH ROBUST

ESTIMATE OF MUTUAL INFORMATION

The objective above involves joint probability density

functions (PDFs) that need to be estimated from a given

training data set. Note: to simplify the following elaboration,

we hereafter omit the subset symbol η in the expressions

unless otherwise specified. Using kernel density estimator,

we have the PDF of a random feature vector

p(a) =
1

N

N
∑

i=1

ϕ(a − ai) (5)

where ϕ is a smoothing kernel, and ai is a given sample of

the random vector. A Gaussian kernel is used.

ϕ(t) = (2π)−
n

2 |ψ|−
1
2 exp

(

−
1

2
t
Tψ−1

t

)

(6)

where ψ is the covariance matrix.

We adopt a method proposed in [12] to approximate

the entropy H(A) with a given set of samples. From the

definition of entropy, it can be viewed as an expectation

H(A) = −

∫

a

p(a)log(p(a))da

= −E[log(p(a))]

∼= −
1

N

N
∑

i=1

log(p(ai)) (7)

Combining the above equations, the entropy of the random

vector A can be approximated by

H(A) = −
1

N

N
∑

i=1

log







1

N

N
∑

j=1

ϕ[ai − aj ]







(8)

Similarly, the within-class entropy H(A|c) can also be easily

estimated by using samples from the class c only.

Now we consider how to use this estimate to efficiently

select a feature subset for classification.

As in conventional CSP, it’s reasonable to assume that

most discriminant features are associated with a relevant

rhythm (i.e. a user-specific frequency band.) Thus, we con-

sider only those feature subsets whose elements are from

a single frequency band. Besides, since the top and bottom

few components from a CSP projection contain the most

discriminant information, the other features are discarded for

feature selection. To further reduce computational cost in this

study, we select the feature subsets with two elements only.

In other words, the selected feature subset is a pair of CSP

features from a single frequency band.

Hence our algorithm for determining the optimal feature

subset can be expressed in the following pseudo-code.

1) Process raw EEG by filter banks and respective CSPs

and obtain features {amn}, where only the top 2 and

the bottom 2 CSP components are used for each filter

bank;

2) For each filter bank k, k = 1, . . . ,K;

a) For each pair (η) of CSP features: η ∈ N
where N is the set of all possible combination

of choosing 2 features from the 4 CSP features;

thus the size of N is
(

4
2

)

= 6;

i) Compute the entropy H(Aη);
ii) Compute the within-class entropy H(Aη|c)

for each class: c = 1, . . . , Nc;

iii) Compute the mutual information I(Aη|C)
according to Eq. 2 and Eq. 3;

b) Select the optimal subset for the k-th filter bank:

η(k) = argmaxη∈N I(Aη|C);
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3) Select the optimal subset for all filter banks: ηopt =
argmaxη(k) I(Aη(k) |C)

IV. EXPERIMENTS

A. Description of BCI Competition Dataset I

Data set 1 from BCI Competition IV were used

for assessing the proposed method. A full description

can be found at http://ida.first.fhg.de/projects/bci/ competi-

tion iv/desc 1.html. Here is a brief introduction. The data

were recorded from 4 human subjects and 3 artificial ones.

During the data collection, motor imagery was performed

without feedback. Each subject chose two classes of motor

imagery from left hand, right hand, and foot (side chosen

by the subject; optionally also both feet.) In each motor

imagery trial, visual cues were displayed for a period of 4s

during which the subject was instructed to perform the cued

motor imagery task. These periods were interleaved with 2s

of blank screen and 2s with a fixation cross shown in the

center of the screen. The EEG contains 59 channels.

In this study, we use the calibration data sets from the

4 real human subjects, where each subject contributed 200

trials that are evenly distributed over the two chosen classes.

And to facilitate the computation, our experiment uses the

100Hz version of the data.

B. Description of Our Own Dataset

A separate data set was collected in our lab, involving 7

healthy, male and young subjects. Each subject contributed

160 motor imagery trials that were evenly distributed over

two classes: left-hand motor imagery and right right motor

imagery. At the beginning of each trial, a fixation symbol

appeared on the screen that prompted the subject to prepare;

after 2 seconds, a random visual cue appeared to indicate

either left-hand or right-hand; 4 seconds later, a stop signal

presented to marked the end of the trial. These trials were

interleaved with 6 seconds of break. EEG was acquired

with a Neuroscan amplifier working at a sampling rate of

250Hz. And 25 EEG channels surrounding the motor cortex

areas were selected, without channel-selection tuning for

individual subjects.

C. Evaluation Setting

In this study, we used the same setting for both datasets.

• Time interval (i.e. the time segment of a motor imagery

trial for analysis). It starts at 1 second and ends at 4

seconds after the cue. The starting point was set as such

to remove the effect of spontaneous responses (evoked

potentials) to the cue.

• Frequency ranges for filter banks. The center fre-

quency of the banks linearly span the range from 5.5Hz

to 29.5 Hz, with a fixed bandwidth of 1.5Hz. The filters

are all Chebyshev Type II.

• Channels. No channel selection was performed. For the

BCI Competition dataset, all the 59 channels were used.

For our own dataset, all the 25 channels were used.
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Fig. 1. Accuracy on BCI Competition IV Set I (with Naı̈ve Bayesian
Parzen window classifier)

• Classifiers. We tested two widely-used classifiers:

Naı̈ve-Bayesian Parzen window classifier, support vec-

tor machines (SVMs). The former was recommended

as in prior studies on FBCSP. The SVMs library was

provided by the bioinformatics toolbox in Matlab.

• Methods under comparison. In this study, we also

evaluated other three methods on the same datasets and

setting. The methods include

– CSP. Conventional CSP with a broad passband

from 6Hz to 28Hz (with a Chebyshev Type II filter).

– Filter-bank CSP using a wrapper approach. See [9].

Its short name is FBCSP wrapper in the graphs.

– Filter-bank CSP using a filter approach. See [9]. Its

short name is FBCSP filter in the graphs.

• Number of Features. Only 2 features are selected for

each of the methods under comparison.

• Evaluation of classification accuracy. A randomized

5x5fold cross validation was applied to compare the

methods in terms of classification accuracy.

D. Results and Discussions

Figure 1 and 2 plot the statistics of classification accuracy

for each method on individual subject as well as on average

for each dataset. In particular, each bar represents an aver-

aged (over 5 by 5 folds) classification accuracy rate, while

the small bar on top of it denotes the standard deviation of

the accuracy rate over the folds.

The results indicate that, with the Naı̈ve-Bayesian Parzen

window classifier, all feature extraction methods except for

the conventional CSP could yield an accuracy rate close to

or above 80% on the competition dataset, or above 75% on

our dataset. Compared with FBCSP methods, the proposed

method yielded a significant 3.6% boost and 1.5% boost

in accuracy on the two datasets. Importantly, the more

prominent improvement lies in the variance: the STD of

the accuracy rate is approximately halved by the proposed

method.

Figure 3 and 4 illustrate the comparative classification re-

sults with the SVM classifier. The results are nearly identical

to that with the Naı̈ve-Bayesian Parzen window classifier.
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Fig. 2. Accuracy on Our 7 subjects (with Naı̈ve Bayesian Parzen window
classifier)
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Fig. 3. Accuracy on BCI Competition IV Set I (with SVM classifier)
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Fig. 4. Accuracy on Our 7 subjects (with SVM classifier)

The proposed method outperformed the other three by 3%

on the competition dataset and by 1% on our dataset, all

on the test sets in cross-validation. Again, the prominent

improvement lies in the STD of the accuracy rate. This

indicates that the new method clearly stands out in terms

of robustness against changes in training-test sets.

Besides, it is evident that all the three feature extraction

methods are not very sensitive to the choice between the two

classifiers.

V. CONCLUSIONS

We have presented an efficient feature extraction method

for motor imagery classification. The method has been vali-

dated with a total of 11 subjects from 2 independent datasets.

It’s noteworthy to emphasize that the method is a fully

autonomous learning and classification mechanism. And this

work demonstrates that, without painstaking manual-tunning

of the parameters, the autonomous technique can select

effective discriminative features for high performance motor

imagery BCIs.
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