
  

  

Abstract— Fatigue is a negative symptom of many illnesses 
and also has major implications for road safety. This paper 
presents results using a method called microstate segmentation 
(MSS). It was used to distinguish changes from an alert to a 
fatigue state. The results show a significant increase in MSS 
instantaneous amplitude during the fatigue state. Plotting the 
linear gradient of the nonlinear part of the phase data from the 
MSS also showed a significant difference (P<0.01) in the 
gradients of the alert state compared to the fatigue state. The 
results suggest that MSS can be used in analyzing spontaneous 
electroencephalography (EEG) signals to detect changes in 
physiological states. The results have implications for 
countermeasures used in detecting fatigue. 

I. INTRODUCTION 

atigue is a symptom of many acute and chronic illnesses 
as well as being associated with the “wear and tear” of 
normal everyday healthy functioning [1]. It can be 

defined as a state that involves psychological/mental and 
physical tiredness or exhaustion with a vast range of 
symptoms including tired eyes, yawning, increased blinking, 
poor concentration, and low motivation. Fatigue also has 
major implications for road safety as it has been identified as 
a major cause of road accidents worldwide and is believed to 
account for up to 40% of road crashes [2].  Fatigue related 
driving accidents are thought to be a result of a decrement in 
performance of the driver caused by the reduction in his/her 
level of arousal [3]. To understand this phenomenon there 
have been studies that have investigated the association 
between brain electrical activity using 
electroencephalography (EEG), and the onset of fatigue 
symptoms. In the EEG, an increased level of alpha activity is 
often associated with decreased cortical arousal and an 
increase in beta activity has been associated with increased 
cortical arousal [4]. Thus the majority of studies that have 
investigated changes in spectral activity during fatigue, have 
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found, for instance, an increase of low frequency EEG 
waves such as delta (0.5-3.5), theta (4-7.5Hz) and alpha (8-
13Hz), while higher frequency waves such as beta rhythms 
(14-32Hz) will decrease [5].  

A novel approach to understanding how brain function 
changes as a result of decreased arousal levels during fatigue 
states is to study the microstate segmentations of brain 
activity. The algorithm used in this paper is based on the 
technique of microstate segmentation of brain activity [6, 7], 
defined as a functional or physiological brain state during 
which specific neural computations are performed. It is 
characterised by fixed spatial distributions of active neuronal 
generators with time varying intensities [6].  

In this paper we analyzed the temporal properties of 
spontaneous brain activity during two different arousal or 
physiological states (alert versus fatigue). The EEG 
recordings consisted of time varying measurements of scalp 
electric potential field and reflect the dynamics of the 
functional state of the brain. It was hypothesized that the 
topographic time course of the scalp electric field can be 
segmented into stable scalp maps called microstates. In 
EEG, electric potential variations occur as a result of 
neuronal firing of the brain. Neurons generate small 
electrical variation which summed over a region provides 
the potential variation in that space. This is measured at the 
various scalp electrodes. In addition, this variation is also 
measured as a function of time. Instead of analyzing the 
scalp electrode data in terms of wave shapes, the dynamics 
used in this analysis was based on microstates. Although this 
approach was originally designed for electrical activity 
performed on particular tasks called Event Related Potentials 
(ERP), it can also be applied to spontaneous EEG [6]. In 
ERP one expects microstates to be more stable during 
particular tasks, unlike that found in spontaneous EEG. 
Therefore, instead of examining the noisy structure of the 
microstate distribution, we focused on the analysis of the 
time series. 

II. METHODS 

A. Participants 
Fifty participants were randomly selected from a 

community population to participate in the study. Data from 
eleven participants could not be used due to impedance 
problems in one or more electrodes leading to loss of EEG 
data.  Only 39 participants remained and the mean age of 
this group was 31.1 years (S.D. = 12.3 years), ranging 
between 18 and 55 years. Subjects were stratified for sex in 
order to balance the number of males and female participants 
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in the study. The final number of subjects consisted of 20 
females and 19 males. Participants were only admitted into 
the study if they were currently healthy (as determined by a 
structured interview before the study), held a current drivers 
license and reported no prior brain disease or injury. The 
study was approved by the institutional research ethics 
committee and participants were only entered into the study 
after informed consent.  

B. Experimental Procedure and EEG Analysis 
In order to create a change in arousal levels leading to 

fatigue, the experiment condition consisted of assessing 
vigilance using a cognitive-motor vigilance task called the 
Divided Attention Steering Simulator (DASS) (Stowood 
Scientific Instruments).  Throughout the task, physiological 
signals and participants’ faces were videoed while 
performing the simulated driving so that information on 
when subjects fatigued would be known. EEG signals were 
also simultaneously taken to measure the neurophysiological 
changes associated with fatigue.  

Participants were instructed to ‘drive’ in the centre of the 
road (shown on the computer screen) till they showed 
definite signs of fatigue. The task was considered 
monotonous because the participants were required to drive 
at slow speeds (around 40-60km/hr) for an extended period 
of time in a noise, stimulus and temperature controlled 
laboratory. At the same time as driving, vigilance and 
performance was measured from a reaction time task 
whereby they were required to respond to a target number 
that appeared in any of the four corners of the computer 
screen at random times. Participation in the task was 
terminated by the researcher when participants showed 
definite signs of fatigue such as (i) fatigue related facial 
symptoms such as nodding and prolonged eye closure or (ii) 
when they deviated off the road for more than 15 s. 

EEG within the first 5 minutes of starting the driving 
task was selected as “alert” EEG and another selection was 
taken within the 5 minute interval where participants were 
deemed as fatigued before the task was terminated. Thirty-
two channel EEG data from the 39 participants was analyzed 
using the microstate segmentation technique. The EEG data 
was preprocessed so that is was free of artifact. Artifact was 
removed using a program which employs second-order blind 
identification (SOBI) and canonical correlation. Two EEG 
segments, each of 20s duration, were chosen from the 5 
minutes of alert and fatigue states. The first 20 seconds with 
the least movement artifact was taken for analysis. This was 
combined into 40 seconds for the microsegmentation 
analysis to be carried out on the composite record. 

C. Microstate segmentation model (MSS) 
The EEG of the brain can be viewed as a sequence of 

non-overlapping states with variable duration and intensity. 
The scalp data is represented in terms of a set of normalized 
vectors T, which are the different microstates. At each time t, 
the multi-channel data is considered to belong to a 
microstate kT  with a particular intensity which is stored in a 
matrix A [6]. 

Suppose tV  is a sN x1vector consisting of measured scalp 
potential at the sN  scalp electrodes at time t (t=1, 2, … TN ). 
Further, let kT  be the normalized sN x1 vector that 

represents the k th microstate and kta  be the intensity at time 
t. The microstate model for the average reference multi-
channel data is then represented as: 

                         ∑
=

=
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k
kktt TaV

1
                     (1) 

where μN  is the number of microstates.  In order to allow 

for non-overlapping microstates at each time instant, all kta  
must be zero except one. Thus at each time instant, the 
summation in (1) reduces to one non-zero term, 
corresponding to a single active microstate.  

The parameters required to estimate the model are kta ,  

kT  and  μN  . The method adopted in this paper is the same 
basic N microstate algorithm described in [6]. For a 
given μN , the process is started with  tL  t=1,…. TN , which 
are the microstate labels associated with each 

tV . We then 
compute:  
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The summation here includes only the time points 
where kLt = . The normalized microstate 

kT  is then obtained 
as the normalized eigenvector corresponding to the largest 
Eigen value. In equation (2), '

tV  is the transpose of tV . The 
microstate kT  associated with the observation tV  is the 
value of kT  which minimizes  

                 2''2 )*(* ktttkt TVVVd −=          (3) 
Thus, a new set of microstate labels are obtained.  We then 
evaluate the function 
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 The process is iterated till successive values of (4) differ 
negligibly. Once convergence is attained for a 
particular μN , we calculate  

2122 )]1()1[( −− −−−= μμσσ NNN ss     (5) 

μN  is then estimated by minimizing 2σ .  

Once μN  is estimated, the intensity kta  of the microstate 

kT  which is associated with  tV  for that μN  is obtained 
from 

                             ktkt TVa *'=                      (6) 
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D. Analysis of MSS Intensity{ kta  } 

EEG recordings consist of time varying measurements of 
scalp electric potential and reflect the dynamics of the 
functional state of the brain. The topographic time course of 
these scalp electric field can be segmented into stable scalp 
maps called microstates. The observation is thus expressed 
by a finite set of microstates, where each time t corresponds 
to a microstate k with an associated coefficient kta . This 
coefficient reflects the polarity and strength of the neuronal 
generators which gives rise to this microstate. It is referred 
[6,7]  to as the microstate intensity.   

The coefficient kta  of the microstate 
kT  is related to the 

intensity of the neuronal generators responsible for this 
microstate at time t.  For each time t we have a value of kta . 
In this section we examined the amplitude and phase of the 
envelope of the time series { kta }.  This is explained in this 
section. Consider a real time series {x(t)}. The analytic 
signal  y(t) is defined by: 

 
                                  )()()( tihtxty +=    (7) 
  
where  h(t) is the Hilbert transform of x(t), 

                                 td
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Here P is the Cauchy principal value. It can be shown [8], 
that if  
                                 ])([)( )(tietaRtx φ=   (9) 
 
where R is the real part, then  
                                 )()()( tietaty φ=    (10) 
 
The instantaneous amplitude and phase of the real time 
series {x(t)} is the amplitude and phase of the analytic 
signal. The phase of the analytic signal is made continuous 
using the Matlab routine unwrap, which unwraps the phase 
to make it continuous across theπ . 

III. RESULTS 
In this study we examined whether the amplitude and phase 
information from { kta } of MSS is able to distinguish the 
two states “alert” and “fatigue”. Since the MSS was carried 
out on the composite record (alert (A) (at 0-20s), then 
fatigue (F) (at 21-40s)), the same type of microstate will 
represent both alert and fatigue states. However the number 
of each type of microstate present in alert and fatigue states 
will be different. The MSS analysis shows that the 
microstates necessary for proper representation of the 
composite EEG data varied from 3 to 5. The number of each 
these microstates in the alert and fatigue states varied. These 
numbers presented no obvious feature in the records 
analyzed, to discriminate alert from fatigue.    

Fig. 1 shows the MSS of spontaneous EEG during alert 
and fatigue state. The top left plot of Fig. 1 shows the 

instantaneous amplitude (a(t)) of  { kta } obtained from a 
composite EEG record.  The top right plot shows the average 
of a(t) (avg(t)), evaluated at each time t using the previous 4 
seconds of a(t). Thus avg(t)=mean (amp(t-4:t)), where the 
initial value of t =4. The result is shown for increments of t 
of 1 second, beyond t=4. The bottom left shows the phase 

)(tφ  of { kta } obtained from EEG records. Although )(tφ  
appears to be linear, it has structure. This is seen in the 
bottom right plot where r(t) is drawn, which is the non linear 
part of )(tφ . It is given by: 

)()()( 10 tccttr +−= φ    (11) 
where 

0c , 1c  are the intercept and slope of the linear fit to 

)(tφ . 
 

The results of Figure 1 show that there is an increase in 
the amplitude after 20s, in the fatigue state. Further the non-
linear of the phase (r(t))  shows a change in the direction of 
the gradient at t=21s. 
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Fig. 1.  MSS of spontaneous EEG during alert (0-20s) to fatigue (21-40s) 
states: The instantaneous amplitude a(t) (top left), avg(a(t)) (top right); 
phase )(tφ  (bottom left); r(t) (bottom right). All plots are drawn as a 
function of time. 

 
 
In order to investigate whether the increase in amplitude 

going from alert to the fatigue state is significantly different, 
the mean amplitude in the alert state (0-20 s) and the mean 
amplitude in the fatigue state (21-40s) were evaluated.  

 
Fig. 2 shows a plot of the mean amplitude of the different 

subjects in the alert state against the difference in the mean 
amplitude between alert and fatigue. The results indicate that 
in the majority of cases there is an increase in the amplitude 
in going from alert to fatigue. Dependent t-test analysis 
revealed significant differences between states (t=5.68; 
p>0.01). 
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Fig. 2.  Plot of the difference in the mean amplitude of (Fatigue-Alert) for 
different mean amplitudes of alert state. F= Fatigue, A= Alert 
 

Figure 3 examines the linear gradient of the nonlinear part 
of the phase (r(t)) in the alert and fatigue region. Plotted 
along the x axis is the gradient of the linear fit of r(t) in the 
A region(between  t =0 to 20s ). It is denoted by m(A).  The 
values along the y axis are the absolute difference between 
the gradients of the linear fit of r(t) in the F region m(F)  
(t=21 to 40s) and the A region m(A) (t=0 to 20s). It is 
denoted by |m(F)-m(A)|. The results indicate in general, that 
there is a difference in the gradient in r(t) in going from A to 
F. Dependent t-test analysis showed significant differences 
in the gradients of the two states (t=7.65; p>0.01). 
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Fig. 3.  Plot of the absolute difference in the gradient |m(F)-m(A)|  for 
different gradients of m(A). The gradients are obtained by r(t). F= Fatigue, 
A= Alert 

IV. CONCLUSION 
The paper examined the use of microstate intensity in 
analyzing spontaneous EEG data, where the data comprised 
of recordings of alert and fatigue state in 39 adult 
participants. The two EEG records were combined and MSS 
analysis was carried out on the composite record. The focus 
of this study was to investigate the use of the one 
dimensional microstate intensity data to analyze the 

composite record. We examined one aspect of this series, 
which was the analysis of the instantaneous amplitude and 
phase of the envelope time series of the microstate 
intensities. The results indicated that the amplitude and 
phase of the microstate intensity time series is able to 
discriminate the two records and provide information on the 
onset of fatigue in the composite record. The amplitude of 
the fatigue state was found to be significantly higher than 
alert. Another study has also examined microstate 
segmentation in different arousal states such as alert, 
drowsy, and REM sleep, however, in the alpha band only. 
They also found that it was drowsiness that showed the 
greatest amounts of differences in microstates compared to 
relaxed wakefulness and REM sleep [9]. This method could 
be implemented into fatigue countermeasures using EEG 
signals as the success rate of detecting the beginning of 
fatigue using the change in amplitude was 84%, and 74% 
with change in gradient using phase. It was also found that 
the recordings that detected fatigue from the gradient 
method were the ones that were difficult to identify when 
using the amplitude method, hence, the two methods 
complement each other.        
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