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Abstract—In this paper, we propose a new method for
diagnosing Alzheimer’s disease (AD) on the basis of electroen-
cephalograms (EEG). The method, which is termed “Power
Variance Function (PVF) method”, indicates the variance of
the power at each frequency. By using the proposed method,
the power of EEG at each frequency was calculated using
Wavelet transform, and the corresponding variances were
defined as PVF. After the PVF histogram of 42 healthy people
was approximated as a Generalized Extreme Value (GEV)
distribution, we evaluated the PVF of 10 patients with AD
and 10 patients with mild cognitive impairment (MCI). As a
result, the values for all AD and MCI subjects were abnormal.
In particular, the PVF in the θ band for MCI patients was
abnormally high, and the PVF in the α band for AD patients
was low.

I. INTRODUCTION

Dementia is one of the most common disorders in the
elderly population. Among several subtypes of dementia, the
most common is Alzheimer’s disease (AD). Although AD is
a brain degenerative disorder involving progressive dementia,
if detected and treated from an early stage, it is possible to
slow the progression of AD [1]. Therefore, early diagnosis
and effective treatment of AD are critical issues in the study
of dementia.

Recently, functional neuroimaging techniques such as
single photon emission computed tomography (SPECT),
positron emission tomography (PET), and functional mag-
netic resonance imaging (f-MRI), have been commonly used
as methods for diagnosing AD. Although these techniques
are useful for the early diagnosis of AD, they are pro-
hibitively expensive and/or require the injection of radioac-
tive tracer compounds. In contrast, electroencephalography
(EEG) is inexpensive and non-radioactive tool, and as a
result, there is a considerable amount of research on EEG
as a diagnostic method for AD.

Spectral analysis of the electroencephalograms of AD
patients has been actively performed, and dimensional com-
plexity and coherence analysis of such electroencephalo-
grams has been undertaken by a few studies [2][3]. However,
based on a broad survey of the relevant literature, the
diagnostic accuracy of EEG in AD is currently around 80%.
Therefore, the most critical issues targeted by EEG studies
on AD involve improving the accuracy of the differential
diagnosis of AD [4]. In this regard, Musha et al. indicated the
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possibility that even mild cognitive impairment (MCI) could
be detected with high sensitivity by evaluating the variance
of power of the EEG [5]. Therefore, it is considered that
the variance of power of the EEG is an important index of
neuronal abnormality in AD patients.

In this study, we analyzed the variance of power of EEG
at each frequency and applied the results to developing a
method of early detection of AD. Here, we show the EEG
characteristics of AD patients as obtained with the proposed
method.

II. METHOD

A. Variability Characteristics of Each Frequency Component

We calculated the variability characteristics of the power
process of each frequency component by applying the Con-
tinuance Wavelet Transform (CWT) [6]. CWT is defined as
follows:

C(a, t) = CWT [x(t)]

=
1√
a

∫ ∞

−∞
x(τ)ψ(t)

(
t − τ

a

)
dτ, (1)

where CWT [x(t)] shows the CWT of x(t), x(t) is the target
time series, ψ(t) is the mother wavelet, and ψ(t) shows the
complex conjugate of ψ(t). In this paper, we use the Gabor
wavelet given by (2) as the mother wavelet.

ψ(t) =
1

2
√

πσ
e−

t2

σ2 e−j2πf0t (2)

The parameter σ defines the bandwidth of the Gaussian
window and f0 is the central frequency. Here, we use σ = 8,
f0 = 1.

It is known that the real part of CWT [x(t)] shows the
variability characteristics of x(t) at frequency f � f0

a . By
adapting equation (1) to the EEG signal xi(t) recorded at
electrode j, theoretically it is possible to obtain the char-
acteristics of each frequency component of EEG. However,
the amplitude and the signal/noise ratio of EEG generally
fluctuate for different individuals. To eliminate individual
differences, we introduce the normalized variability given
by:

Pi(f, t) =

∥∥∥∥∥CWT

[
xi(t)√

< x2
i (t) >

]∥∥∥∥∥
2

, (3)

where <> shows the average of the series [7].
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B. Power Variance Function
To evaluate the activity of the EEG variability character-

istics, we calculated the variance σ2
i (f) for Pi(f, t):

σ2
i (f) =< (Pi(f, t)− < Pi(f, t) >)2 >

=< P 2
i (f, t) > − < Pi(f, t) >2 . (4)

This is referred to as Power Variance Function (PVF). The
variance of Pi(f, t) as shown above becomes a function
σ2

i (f) whose variable is the frequency f . The PVF shows
how active the EEG variability is at frequency f .

An example for PVF is shown in Fig. 1, where the PVF is
calculated from the electroencephalogram of an AD patient.
Each line shows the PVF at each electrode. The peak at 10
Hz indicates that the power variance is particularly high at
10 Hz.

PV
F

σ2  (f
)

Frequency  f [Hz]

Fig. 1. Calculated PVF of an AD patient: each line shows the PVF at each
electrode

C. Approximation to parametric distribution
The PVF of healthy subjects is distributed at each fre-

quency at each electrode. Fig. 2(a) shows a histogram of the
PVF at 8.5 [Hz] on F3 for healthy subjects. PVF is distributed
over positive values and is shifted to the left.

The Generalized Extreme Value (GEV) distribution is a
parametric distribution which fits the shape of this histogram
well [8]. Here, we approximated the distribution of PVF of
healthy subjects to a GEV distribution by applying maximum
likelihood estimation, assuming that the PVF is distributed
in accordance with the GEV distribution.

GEV distribution is defined as follows:

y = f(x|κ, μ, σ)

=
1
σ

e−(1+κ x−μ
σ )−

1
κ

(
1 + κ

x − μ

σ

)(−1− 1
κ )

, (5)

where κ is a shape parameter, μ is a position parameter, and
σ is a scale parameter. This distribution is classified into three
types depending on the shape parameter κ: type I or Gunbel
distribution when κ = 0, type II or Fréchet distribution when
κ > 0, and type III or Weibull distribution when κ < 0. In

this research, almost all distributions are type II or Fréchet
distributions. In Fig. 2(a), the solid line is the approximated
distribution. It significantly matches the histogram.

The distribution as obtained in this way suggests that the
upper and the lower 5% of PVF (areas El and Eh) can be
estimated (cf. Fig. 2(a) and (b)). PVF can be categorized as
a hypoactive abnormality if it is in El or as a hyperactive
abnormality if it is in Eh.
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Fig. 2. Approximation to a general extreme distribution

III. RESULT

We analyzed the electroencephalograms of 42 healthy
subjects (The age wes 57-89 years), 10 AD patients (The age
was 68-88 years, Mini-Mental Status Exam (MMSE) score
was 6-23), and 10 MCI patients (The age was 49-86 years,
MMSE was 24-30). The MCI patients were patients who
were deemed probable or possible AD patients at 12 or 18
months after their electroencephalograms were recorded for
the first time, and these first electroencephalograms are used
in this paper. All electroencephalograms were recorded by
staff from Brain Functions Laboratory, Inc. and the National
Center Hospital of Neurology and Psychiatry. All recordings
were made while the patients were at rest with eyes closed for
5 minutes. Twenty-one electrodes were placed over the scalp
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in accordance with the 10-20 International System, with a
right-side auricular reference electrode. The sampling rate
was 200 [Hz]. After the collected data was processed with
a bandpass filter with a bandwidth of 2-40 [Hz], a wavelet
transform was applied. The central frequency of the mother
wavelet was varied between 5 and 40 [Hz] in steps of 0.5
[Hz].

Fig. 3(a) shows the ratio of subjects with hypoactive
abnormality to all subjects in each group (Healthy, AD, and
MCI). From this figure, it is seen that AD patients tend to
have abnormaly in the 10-13 [Hz] band. This is remarkably
clear in the left temporal area (F7, F3, T3, C3), Fz, T4
and P4, where the ratio of AD subjects with abnormality
to all AD subjects is larger than 0.4. MCI subjects often had
abnormaly in the 15-30 [Hz] band in the left temporal area
(F7, F3, T3, C3) and Cz, where the ratio of MCI subjects
with abnormality to all MCI subjects is larger than 0.3.

Fig. 3(b) shows the ratio of subjects with hyperactive
abnormality to all subjects in each group. From this figure,
MCI patients overall tend to have abnormality in the 5-10
[Hz] band. The ratio of MCI subjects with abnormality to
all MCI subjects is larger than 0.5 in the right posterior area
(T6, 02) and C3, and larger than 0.4 for many of the other
electrodes. The electrodes are T3, C3, Pz, and O2 where the
ratio of AD patients with abnormality to all AD subjects are
larger than 0.4.

Combining the hypoactive and the hyperactive values, all
AD and MCI subjects exhibited abnormal values for some
of the electrodes. Besides the ratio of healthy subjects with
abnormality to all healthy subjects is smaller than 0.1 on the
whole electrodes in the each abnormality.

IV. DISCUSSION

A number of other studies have reported that slowing on
EEG is prominent in the left temporal area of AD patients
[9][10]. We also observed hypoactive abnormality in the
temporal area in this study. Considering this fact, it appears
that PVF includes spectral information. The power variance
becomes zero when the signals fluctuate with a constant
amplitude, and therefore PVF can be a solid indicator against
steady noise. In addition, smooth lines can be drawn for
PVF by using the Wavelet transform in order to perceive the
overall tendencies for each bandwidth.

It should be pointed out that MCI patients exhibited abnor-
mally high PVF in the θ band and AD patients exhibited low
PVF in the α band. The electrodes for which abnormal values
were taken were different depending on whether subjects
exhibited hyperactive or hypoactive abnormality. Therefore,
it might be possible to develop a method for diagnosing MCI
in the pre-clinical stage by applying this result.

Although all AD and MCI subjects exhibited abnormal
values, 10% of the healthy subjects also exhibited abnormal
values in some frequency bands at some electrodes, and
this might result in decreased accuracy in distinguishing
between MCI subjects and healthy subjects. The estimated
GEV distribution often did not match significantly with the
distribution of the observed PVF in the left temporal area
above 25 [Hz] since the number of healthy subjects was
insufficient and the PVF histograms were not sufficiently
smooth. In future studies, it will be necessary to obtain
a larger number of samples from healthy subjects and to
calculate proper distributions.

Based on the present results, in order to develop a sensitive
algorithm for diagnosis of MCI in future work, we will select
the proper electrodes and frequency bands and will consider
whether they indicate hypoactive or hyperactive abnormality.

V. CONCLUSIONS AND FUTURE WORKS
It is possible to use PVF to calculate the variance of

each frequency component from the electroencephalograms
of AD-MCI subjects. The method proposed here indicates
that MCI patients exhibit abnormally high PVF in the θ band
and AD patients exhibit low PVF in the α band, and it might
be possible to develop a diagnostic method for MCI for use
in the pre-clinical stage by applying these findings. In the
future, we will apply our method in the development of a
sensitive algorithm for the diagnosis of MCI.
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