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Abstract— Identification of multiple simultaneously recorded neural

spike train recordings is an important task in understanding neuronal

dependency, functional connectivity, and temporal causality in neural

systems. An assessment of the functional connectivity in a group

of ensemble cells was performed using a regularized point process

generalized linear model (GLM) that incorporates temporal smoothness

or contiguity of the solution. An efficient convex optimization algorithm

was then developed for the regularized solution. The point process

model was applied to an ensemble of neurons recorded from the cat

motor cortex during a skilled reaching task. The implications of this

analysis to the coding of skilled movement in primary motor cortex is
discussed.

I. INTRODUCTION

Identifying a neuronal system via multivariate neural spike trains

recorded from ensemble neurons has many valuable implications

for understanding the system from a statistical perspective, and

has been used for establishing statistical associations or causality

between neurons, or finding spatiotemporal correlations, or studying

the functional connectivity [3], [8], [9], [10], [12], [14]. A statistical

treatment of multiple spike trains is to use the theory of stochastic

multivariate point processes. Statistical inference for point process

observations often starts with a certain class of statistical model,

followed by parameter estimation by either maximum likelihood or

Bayesian inference procedure [1], [2], [8], [14], [16].

The point process generalized linear model (GLM) [10], [16] has

been widely used for characterizing functional (spiking) dependence

among ensemble neurons. Recent new developments allow for the

incorporation of the Bayesian inference [14] or modeling common

input [8]. Here we propose a regularized point process GLM that

imposes a temporal smoothness constraint on the parameter space

to explore a physiologically plausible solution. The regularized

solution can be casted within a convex optimization framework and

can be solved efficiently by a linear conjugate gradient method.

The regularized point process GLM was applied to real ensemble

neurons recorded from awake behaving cats during a reaching task

[13]. The functional connectivity and spiking temporal dependence

regarding different stages and different task performances were

examined, and some physiological interpretations and discussions

on the new findings of this pilot study were presented.

II. A POINT PROCESS MODEL FOR MULTIPLE SPIKE TRAINS

Let c = 1, · · · , C denote the index of a multivariate (C-

dimensional) point process. For the cth point process, let Nc(t)
denote the counting process up to time t, and let dNc(t) denote the

indicator variable, which equals to 1 if there is an event (spike) at

time t and 0 otherwise. Therefore, the multiple neural spike train

data are completely characterized by a multivariate point process

N1:C(0 : T ).
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In modeling the neural spike train point process, the conditional

intensity function (CIF) is used to characterize the instantaneous

firing probability of a discrete event (i.e., spike) [1]:

λc(t|H0:t) = lim
∆→0

Pr{Nc(t + ∆) − Nc(t) = 1|H0:t}

∆
, (1)

where H0:t denotes all of ensemble neuronal firing history and

any other information up to time t. Where ∆ is sufficiently small,

the product CIF λc(t|H0:t)∆ tells approximately the probability of

observing a spike within the interval [t, t + ∆):

Pr{Nc(t + ∆) − Nc(t) = 1|H0:t} ≈ λc(t|H0:t)∆. (2)

Here, we restrict ourselves to the cases where
PC

c=1
dNc(t) ≤ 1

at any time t, i.e., no joint firing is allowed in the continuous-time

setting (in the case of discrete-time setting, no joint firing is allowed

at the finest temporal scale under consideration). Let θ denote the

ensemble unknown parameters in the parametric form of function

{λc}
C
c=1. Specifically, we express the CIF in the following log-

linear form [10]:1

log λc(t) = αx
c(t) =

d
X

j=0

αjx
c
j(t) = αi,0 +

C
X

i=1

K
X

k=1

αi,kx
c
i,t−k

where dim(α) = d + 1 (where d = C ×K) denotes total number

of parameters in the augmented parameter vector α = {αi,k}, and

xc(t) = {xc
i,t−k}, where xc

i,0 = 1 and xc
i,t−k denotes the spike

count information from cell i at the kth time-lag history windows.

Let θ = {α1, . . . , αC}, where dim(θ) = C(1 + d). By assum-

ing that the spike trains are mutually conditionally independent, the

continuous-time log-likelihood of observed data is given by:

L(θ) =
C

X

c=1


Z T

0

−λc(t|θ)dt +

Z T

0

log(λc(t|θ))dNc(t)

ff

. (3)

By discretization of (3), we also obtain the discrete-time log-

likelihood function, in which the integration will be replaced by

a finite sum. From (3) it is clear that −L(θ) is convex with respect

to (w.r.t.) to each λc. In addition, the index c is uncoupled from

each other in the network log-likelihood function, which implies

that we can optimize the function separately for each spike train

Nc(0 : T ) once λc(t) is specified. For simplicity, from now on we

will drop off the index c at λc and αc when no confusion occurs.

III. REGULARIZATION AND OPTIMIZATION

When the size of parameter space is large, it is often desirable

to impose certain prior knowledge (such as spatial sparsity) or

physiologically plausible constraint (such as temporal smoothness)

on the parameters [15], [6]. This can be done by the so-called

“regularization” to improve the generalization ability of the model

(on unseen data) while fitting finite training data. Regularization can

be interpreted as imposing a prior on the parameter space in terms of

Bayesian inference, and the log-likelihood will be interpreted as the

1Note that here we use the simplified notation: λc(t) = λc(t|α,H0:t).
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log posterior density of the parameters [14]. Regularization seeks

to maximize a penalized log-likelihood function, which consists of

a log-likelihood function plus a penalty function weighted by a

regularization parameter. Specifically, we propose to maximize the

following penalized log-likelihood function using ℓ2 regularization:

L(α) =

Z T

0

−λ(t|α)dt +

Z T

0

log(λ(t|α))dN(t) − ρα
T
Qα (4)

where ρ > 0 denotes a regularization parameter, and Q denotes

a user-defined positive semi-definite matrix (to be defined below).

When Q = I (identity matrix), then the standard “ridge regression”

is recovered. Maximization of the penalized log-likelihood (4) can

be solved by the expectation-maximization (EM) algorithm [5],

below we propose an alternative yet more efficient solution.

A standard way to optimize the penalized log-liklehood is

through the Newton method. Specifically, let H(α) and g(α)
denote the Hessian matrix and gradient vector of the parameter

vector α, respectively, computed from the L(α) given by (4); the

iterative Newton update equation (at the nth step) is given by

αn+1 = αn − H
−1(αn)g(αn)

= αn +
h

X
T
W (αn)X + ρQ

i

−1

X
T (y − ŷ(αn)) (5)

where y = [dN(1), . . . , dN(T )], X = [x(1), . . . x(T )], W (α) =
diag{w1, . . . , wT } is a T × T diagonal weighting matrix (wt =
λ(t; α)). Since L(α) is concave w.r.t. α, the maximum likelihood

estimation reduces to a convex optimization problem. Equation (5)

can also be formulated as iteratively solving a linear quadratic

system:
h

XT W (αn)X +ρQ
i

αn+1 = XT W (αn)b, where b =

Xαn + W −1(αn)(y − ŷ(αn)). For such a convex optimization

problem, efficient iterative algorithms such as reweighted least

squares (RWLS) [11] or conjugate gradient [7] can be applied.

Next, for the purpose of regularization we want to impose a

physiologically-inspired constraint on the parameters in α. The

motivation is that spiking history dependence often has a local

smoothness between the neighboring temporal windows. When the

parameter sequences {αc,k} are temporally smooth for any index

c, the local variance will be relatively small. Let αc,k denote the

corresponding short-term exponentially weighted average of αc,k,

namely

αc,k = γαc,k−1 + (1 − γ)αc,k

where 0 < γ < 1 is a forgetting factor that determines the range of

local smoothness. Let us define a new quadratic penalty function:

X

c

X

k

(αc,k − αc,k)2 =
X

c

X

k

γ(αc,k − αc,k−1)
2
, (6)

which penalizes the local variance of {αc,k}. Let αc denote the

short-term average vector for the corresponding parameter αc =
[αc,1, . . . , αc,K ], then we further have

‖αc − αc‖
2 = ‖αc − Sαc‖

2
, (7)

where a smoothing matrix S is introduced to represent αc in terms

of αc. Note that the exponentially moving average αc,k can be

viewed as a convolution product between the sequences {αc,k} and

a template. Suppose the template vector has an exponential-decay

property with length ℓ=4, such that template = [(1 − γ), γ(1 −
γ), γ2(1 − γ), γ3(1 − γ)]. Note that the convolution smoothing

operation can also be conveniently expressed as a matrix product

Fig. 1. Spike rasters from all 42 trials and the peri-stimulus time histograms
(PSTHs, binwidth 100 ms) from two task-related M1 pyramidal neurons (#6
and 7). Red lines mark the average timing of different stages of the task.

operation: αc = Sαc, where S is a Toeplitz matrix with the right-

shifted template appearing at each row given as follows:

S =

2

6

6

6

4

1 − γ 0 0 0 · · · 0
γ(1 − γ) 1 − γ 0 0 · · · 0

γ
2(1 − γ) γ(1 − γ) 1 − γ 0 · · · 0

γ
3(1 − γ) γ

2(1 − γ) γ(1 − γ) 1 − γ 0 · · ·

0 γ
3(1 − γ) γ

2(1 − γ) γ(1 − γ) 1 − γ · · ·

· · · 0

.
.
.

.

.

.

3

7

7

7

5

Finally, we obtain the regularization matrix Q = PT P, where in

light of (7) P has a block-Toeplitz structure:

P =

2

4

I − S 0 · · · 0
0 I − S · · · 0

0 · · ·

.
.
.

.

.

.

0 · · · 0 I − S

3

5 . (8)

Our smoothing operator can be seen as an extension of the contin-

gent smoothness operator (as in [15]), where the term (αc,k−αc,k)2

in (8) is replaced by (αc,k − αc,k−1)
2 (i.e., the local mean αc,k

is replaced by its intermediate neighbor αc,k−1 without moving

averaging). Nevertheless, our “smoothness” operator is more gen-

eral and also accommodates [6] as a special case. Like ours, the

regularization matrix Q in [6] also has a block-Toeplitz structure.

Since the regularized minimization problem is convex w.r.t. α, so

the final regularized solution remains globally optimal.

Upon convergence of the algorithm (using a criterion that the

log-likelihood change in two subsequent updates is less than 10−3),

the goodness-of-fit of the point process model is evaluated based

on the Time-Rescaling Theorem and Kolmogorov-Smirnov (KS) test

[1]. The autocorrelation function of the rescaled time series is also

computed to test the independence. It should be pointed out that our

optimization procedure is insensitive to the initial parameter vector

α, and it typically converges within 10 iterations. In our experiment,

we empirically set γ=0.5, and the regularization parameter ρ can

be selected by cross-validation on the KS statistic or the deviance.

IV. DATA AND RESULTS

The real spike train data used in this study were recorded

from 13 neurons in forelimb (7/13) and hindlimb (6/13) areas

of the primary motor cortex (M1) of awake behaving cats in an

extracellular recording preparation [13]. During recording periods,

the animals performed a skilled reaching task. The data analyzed

in this study were taken from one recording session in one cat

where the same task was repeated for 42 independent trials. Each

complete trial recording lasted 3 seconds, which contains “base-

line”, “pre-movement”, “reaching”, “withdraw”, and “feed” [13].

Thirteen single units were isolated, including 8 regular-spiking (RS,

pyramidal) cells and 5 fast-spiking (FS, interneuron) cells (# 3, 4, 5,

8, 10), which were classified based on baseline firing rate and spike

wavelength [4]. Based on whether the cat was able to accurately

grasp the food pellet in one, or required more than one attempt, the
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26−30 ms 1−3 ms13−15 ms

Fig. 2. Dynamic change in excitatory (top row) and inhibitory (bottom row) functional connectivity among 13 motor neurons during reaching movement
(from successful trials). Circles and squares represent RS and FS cells, respectively. Uni- or bi-directional arrow indicates directional statistical dependence
between cells, with solid/dashed lines representing excitatory /inhibitory connections. The title indicates the past spiking history window where the functional
connectivity is inferred using all recordings.

42 trials were divided into 21 successful and 21 unsuccessful trials,

respectively.

A total of 13 × 9 spiking history windows were empirically

chosen (each cell contains 9 preceding history of spike counts),

and dim(α) is 118 for each neuron. The empirically selected 9

firing history windows (up to preceding 40 ms) consist of the

spike counts in the past 1-3, 4-6, 7-9, 10-12, 13-15, 16-20, 21-25,

26-30, 31-40 ms, respectively. Because neuronal spiking activity

is conditionally independent (Eq. 3), individual neurons were fit

with separate point process GLMs, followed by a KS test. For

each neuron, the regularization coefficient ρ was selected by cross-

validation. As an example, we show a few snapshots of dynamic

change in functional connectivity between 13 motor neurons during

reaching movement (Fig. 2). Figure 3 also shows the estimation

results of one cell (#2) during baseline and reaching periods for

both successful trials. Both KS plots fall within 95% confidence

bounds, indicating that the point process model provides a good

description of the spike trains. In this example, it also appears

that during baseline, the spiking dependence coefficients between

many cell pairs are close to 0 (e.g., 3→2, 7→2, 11→2, 13→2).

The same cell pairs show more significant nonzero connectivity

during reaching movement, suggesting that the neuronal interactions

between these cell pairs are task-related. In order to characterize the

time-varying functional connectivity among ensemble neurons, the

excitatory (E) and inhibitory (I) connectivity ratio was computed

within specific temporal windows. The ratio was defined as the total

number of significant nonzero (positive or negative) coefficients

against the total number of pairwise connections. The result on

performance-related reaching movement is shown in Fig. 4. The

average (E+I) connectivity ratio is about 0.35 over time. A close

examination of Fig. 4 reveals that the number of excitatory and

inhibitory connections are quite balanced (in both successful and

unsuccessful trials), indicating the state of neuronal network is bal-

anced by both excitation and inhibition. However, during successful

trials, the numbers of excitatory and inhibitory connections appear

more synchronized (in the same mode of increase or decrease in

connectivity ratio) than in unsuccessful trials. Cell pairs were further

classified according to subtypes (RS-FS, RS-RS, FS-FS) in order

to investigate the incidence of functional interactions in these three

groups. It was found that in both baseline and reach conditions, FS-

FS pairs were most likely to display significant temporal spiking

dependency, followed by RS-FS and RS-RS pairs. This observation

was consistent with the findings discussed in [4]. In addition, when

the total number of significant temporal spiking dependent events

was compared between the baseline and reaching conditions, more

interactions occurred during reaching in all three cell-pair groups,

as well as for both successful and unsuccessful trials. This is

in agreement with descriptions of task-related correlated neural

activity [13]. In comparing skill-related successful vs. unsuccessful

trials for each cell (data not shown), it was common to observe

opposite excitatory vs. inhibitory effects among some cell pairs

(Fig. 5). This phenomenon was seen in both RS and FS cells. This

provides “statistical” evidence that the strength, timing and pseudo-

postsynaptic effects of functional interactions between task-related

cell pairs may play a role in coding for performance-related skill.

V. DISCUSSION

We have developed a regularized point process GLM for charac-

terizing functional connectivity of ensemble motor neurons during

a reaching movement task. The introduction of “temporal smooth-

ness” regularization into the model is important in that first, it

significantly reduces the variance of the parameter estimate (due

to space limit, we cannot show the non-regularized estimation

results), thereby improving the generalization ability for the unseen

spike train data in cross-validation (see e.g., Fig. 6); and second,

it imposes a physiologically plausible constraint (as a prior) on the

solution, making the interpretations of our results more meaningful.

In our preliminary analysis, we observed a dynamic tempo-

ral spiking dependency (beyond the standard 2nd-order cross-

correlogram analysis) within M1 neuronal ensembles (Figs. 2-4).

It was also found that significant (nonzero) statistical dependence

between neuron pairs were seen more common during task perfor-

mance, but not during the baseline period (Fig. 3). Interestingly,

while the outcome of task performance did not appear to affect

the incidence of functional interactions, the differences observed

in neuronal interactions during successful and successful trials

suggest that temporal coding in ensemble neurons may influence

task performance.

The above findings provide a promising direction in interpreting

the physiology and temporal coding among recorded motor neurons.

An in-depth statistical analysis for more spike train data is currently

under investigation. With further analysis, we hope that the statis-

tical analysis within the regularized point process GLM framework

5008



0 20 40
−0.5

0

0.5

Cell 1−>2

0 20 40
−0.5

0

0.5

Cell 2−>2

0 20 40
−0.5

0

0.5

Cell 3−>2

0 20 40
−0.5

0

0.5

Cell 4−>2

0 20 40
−0.5

0

0.5

Cell 5−>2

0 20 40
−0.5

0

0.5

Cell 6−>2

0 20 40
−0.5

0

0.5

Cell 7−>2

0 20 40
−0.5

0

0.5

Cell 8−>2

0 20 40
−0.5

0

0.5

Cell 9−>2

0 20 40
−0.5

0

0.5

Cell 10−>2

0 20 40
−0.5

0

0.5

Cell 11−>2

0 20 40
−0.5

0

0.5

Cell 12−>2

0 20 40
−0.5

0

0.5

Cell 13−>2

Time (ms)
0 0.5 1

0

0.5

1

KS plot

C
D

F

Quantiles
2 4 6 8

2000
4000
6000
8000

10000

Iteration

Deviance

Baseline

0 20 40
−0.5

0

0.5

Cell 1−>2

0 20 40
−0.5

0

0.5

Cell 2−>2

0 20 40
−0.5

0

0.5

Cell 3−>2

0 20 40
−0.5

0

0.5

Cell 4−>2

0 20 40
−0.5

0

0.5

Cell 5−>2

0 20 40
−0.5

0

0.5

Cell 6−>2

0 20 40
−0.5

0

0.5

Cell 7−>2

0 20 40
−0.5

0

0.5

Cell 8−>2

0 20 40
−0.5

0

0.5

Cell 9−>2

0 20 40
−0.5

0

0.5

Cell 10−>2

0 20 40
−0.5

0

0.5

Cell 11−>2

0 20 40
−0.5

0

0.5

Cell 12−>2

0 20 40
−0.5

0

0.5

Cell 13−>2

Time (ms)
0 0.5 1

0

0.5

1

KS plot

C
D

F

Quantiles
2 4 6 8

5000

10000

Iteration

Deviance

Reaching

Fig. 3. An example of estimated GLM coefficients {αc,k} for 9 history-
dependent components from all 13 cells during baseline (top) and reaching
movement (bottom). A→B assumes cell A triggers the target cell B firing
with a unidirectional spiking dependence. The KS plot and the deviance
convergence curve are also shown at the last two panels in each case. Shaded
areas represent 95% confidence bounds.

0 5 10 15 20 25 30 35 40
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Preceeding time lag (ms)

R
at

io

 

 

unsucc, E

unsucc, I

succ, E

succ, I

Fig. 4. The time-varying significant nonzero connectivity ratio for both
excitatory (E) and inhibitory (I) connections during reaching movement
within successful and unsuccessful trials.
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between unsuccessful and successful trials during reaching movement.
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Fig. 6. The training and cross-validated KS statistics vs. the regularization
coefficient ρ (cell #2, among 21 successful trials during reaching move-
ment). In this case, the suboptimal ρ is chosen to be 30 (for γ = 0.5).

may shed some light on discovering the functional connectivity

among ensemble neurons. More specifically, this may lead to devel-

oping computational tools which allow to make inferences regarding

task performance based on the nature of neuronal interactions.
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