
  

  

Abstract—The capacity to decode kinematics of intended 
movement from neural activity is necessary for the 
development of neuromotor prostheses such as smart artificial 
arms. Thus far, most of the progress in the development of 
neuromotor prostheses has been achieved by decoding 
kinematics of the hand from intracranial neural activity. The 
comparatively low signal-to-noise ratio and spatial resolution of 
neural data acquired non-invasively from the scalp via 
electroencephalography (EEG) have been presumed to prohibit 
the extraction of detailed information about hand kinematics. 
Here, we challenge this presumption by attempting to 
continuously decoding hand position, velocity, and acceleration 
from 55-channel EEG signals acquired during three-
dimensional center-out reaching from five subjects. To 
preserve ecological validity, reaches were self-initiated, and 
targets were self-selected. After cross-validation, the overall 
mean correlation coefficients between measured and 
reconstructed position, velocity, and acceleration were 0.2, 0.3, 
and 0.3 respectively. These modest results support the 
continued development of non-invasive neuromotor prostheses 
for movement-impaired individuals. 

I. INTRODUCTION 
rain-controlled devices such as neuromotor prostheses  
possess the potential to improve or restore the ability of 

movement-impaired individuals to interact with their 
environment in real time. In an effort to bring these types of 
brain-computer interface (BCI) systems to fruition, hand 
trajectories, velocity profiles, and acceleration profiles have 
been decoded from intracranial neural signals and, in some 
cases, used to command a cursor or robotic arm in real time 
[1-9]. In contrast, studies that have employed 
electroencephalography (EEG) to acquire non-invasive 
signals from the scalp have not focused on decoding detailed 
kinematics of natural hand movements. Instead, these EEG 
studies have typically involved discrete classification of the 
direction of two-dimensional hand movement or different 
motor imagery tasks on a single-trial basis [10-13] or 
continuous two-dimensional control of a cursor through 
biofeedback training [14]. The lack of attention to decoding 
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kinematics of natural hand movements from EEG signals 
could be partly due to the common belief that extracranially 
acquired signals do not possess a sufficient signal-to-noise 
ratio or spatial resolution to decode this type of detailed 
information [15]. 

Casting doubt on this notion, several recent studies have 
decoded two-dimensional hand / tool kinematics from neural 
activity acquired from the scalp via 
magnetoencephalography (MEG) [16-19]. Motivated by 
these findings and the impracticability of a portable MEG-
based neuromotor prosthesis, we sought to continuously 
extract hand trajectories, velocity profiles, and acceleration 
profiles from EEG signals collected during a three-
dimensional center-out reaching task. Furthermore, to 
maintain ecological integrity, we did not cue subjects. They 
chose which target to acquire and when to initiate 
movement. 

II. METHODS 

A. Experimental Procedure and Data Collection 
The Institutional Review Board of the University of 

Maryland at College Park approved the experimental 
procedure. After giving informed consent, five healthy, 
right-handed subjects sat upright in a chair and executed 
self-initiated center-out reaches to self-selected push button 
targets near eye-level. We instructed subjects to attempt to 
make uniformly distributed random selections of the eight 
targets without counting. The elbow of the reaching arm was 
unsupported, and the non-reaching arm relaxed in the lap. To 
help prevent eye movements from contaminating the data, 
subjects were instructed to fixate an LED on the center 
target throughout data collection and to only blink when 
their hand was resting at the center target. To ensure the 
absence of eye movements, a researcher monitored the 
subjects’ eyes during data collection, and electro-ocular 
activity was collected for off-line verification. For each 
subject, the experiment concluded after each target was 
acquired at least ten times. 

Neural signals were recorded using an Electro-Cap with 
64 sensors placed on the head according to the extended 
International 10-20 system with ear-linked reference. 
Continuous EEG signals were sampled at 1000 Hz and 
amplified 500 times via a Synamps acquisition system and 
Neuroscan software.  Additionally the EEG signals were 
band-pass filtered from 0.5 to 100 Hz and notch filtered at 
60 Hz. Electro-ocular activity was measured with a bipolar 
sensor montage with sensors attached superior and inferior 
to the orbital fossa of the right eye for vertical eye 
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movement and to the external canthi for horizontal eye 
movement. Hand position was sampled at 100 Hz using an 
Optotrak motion sensing system that tracked an infrared 
LED secured to the finger tip with double-sided adhesive 
tape. To aid the reader in visualization of the hand paths, 
Figure 1 displays the paths of Subject 1 oriented within the 
Cartesian coordinate system employed. Event markers of 
push button presses and releases were sent from the 
apparatus containing the push buttons to the Neuroscan and 
Optotrak systems for off-line synchronization of EEG and 
kinematic data. 

 

 
Fig. 1. Examples of hand paths of Subject 1 for center-out reaches to eight 
targets. The horizontal (x), vertical (y), and depth (z) dimensions of 
movement were respectively defined as right (+) / left (-), up (+) / down (-), 
and away (+) / toward (-). The distance from the center position to each of 
the targets was approximately 21.6 cm. Subjects took approximately 4 s to 
execute a single center-out reach and return to the center position. 
 

B. Signal Pre-processing 
For computational efficiency and to match the sampling 

rate of the kinematic data, the EEG data were decimated 
from 1 kHz to 100 Hz by applying a low-pass anti-aliasing 
filter with a cutoff frequency of 40 Hz and then 
downsampling by a factor of 10. Data from each EEG sensor 
were standardized: 
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where Sn[t] and sn[t] are respectively the standardized and 
measured voltage at sensor n at time t, ns  and 

nsSD  are the 
mean and standard deviation of sn respectively, and N is the 
number of sensors. We obtained the best decoding results 
when both the EEG and kinematic data were subsequently 
filtered with a zero-phase, fourth-order, low-pass 
Butterworth filter with a cutoff frequency of 2 Hz. Low-
frequency bands have previously been found to carry 
kinematic information [12,18,19]. 

C. Decoding Model and Cross-Validation 
To continuously decode hand position from the EEG 

signals, a linear decoding model was employed [16]: 
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where x[t], y[t], and z[t] are the horizontal, vertical, and 
depth positions of the hand at time sample t respectively, N 
is the number of EEG sensors, L is the number of time lags, 
Sn[t – k] is the voltage measured at EEG sensor n at time lag 
k, and the a and b variables are weights obtained through 
multiple linear regression.  For velocity decoding, the same 
equations were used with x[t], y[t], and z[t] replaced by their 
approximate first-order derivatives: [ ]1][ −− txtx , 

[ ]1][ −− tyty , and [ ]1][ −− tztz . The approximate first-
order derivatives of velocity were used for acceleration 
decoding. The number of lags (L=10, corresponding to 100 
ms) was chosen based on a previous study that decoded 
kinematics from neural signals acquired with MEG [18]. The 
three most frontal sensors (FP1, FPZ, and FP2 of the 
International 10-20 system) were excluded from the analysis 
to further ensure that eye movements would not affect 
decoding, resulting in an N of 55 sensors. 

For each subject, the collected continuous data contained 
approximately 80 trials. An 8x8-fold cross-validation 
procedure was employed to assess the decoding accuracy. In 
this procedure, data were divided into 8 parts, 7 parts were 
used for training, and the remaining part was used for 
testing. The procedure was considered complete when each 
of the 8 combinations of training and testing data were 
exhausted, and the mean correlation coefficient (CC) 
between measured and decoded kinematics was computed 
across folds. Prior to computing the CC, the kinematic 
signals were smoothed with a fourth-order, low-pass 
Butterworth filter with a cutoff frequency of 2 Hz. 

III. RESULTS 
The mean and standard error of the mean (SEM) of the 

CCs between measured and decoded trajectories, velocity 
profiles, and acceleration profiles are shown in Figure 2. 
Variation in decoding accuracy among subjects was evident, 
but some general trends were apparent. The overall mean 
CCs for position, velocity, and acceleration were 0.2, 0.3, 
and 0.3 respectively. The depth dimension (z) was best 
decoded followed by the vertical dimension (y) then the 
horizontal dimension (x). For x and y, the grand mean CCs 
of velocity and acceleration were similar and greater than 
that for position. For z, the grand mean CCs for velocity and 
acceleration were also greater than that for position, but the 
grand mean CC for acceleration was noticeably greater than 
that for velocity. Examples of smoothed, reconstructed 
kinematics visually matched the measured kinematics well 
(Fig. 3). 
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Fig. 2. Mean (n = 8) and SEM (error bar) of the CCs between measured and decoded kinematics for x (a), y (b), and z (c). Decoding results are displayed 
individually for each of the five subjects (S1 through S5) and collectively across subjects (grand mean). For each dimension, the results for position, 
velocity, and acceleration are represented with shading from dark to light respectively. 
 

 
 

Fig. 3. Examples of standardized and smoothed measured (black) and decoded (red) trajectories (a), 
velocity profiles (b), and acceleration profiles (c) from Subject 1. The left column is for x, the middle 
column for y, and the right column for z. The CCs between measured and decoded kinematic 
variables are listed for each plot. 

 
part, due to the presumption that non-
invasive signals do not possess detailed 
decodable information required for 
process control [15]. In contrast, studies 
using intracranial recordings have 
largely implemented process control. 
While we acknowledge that the best 
choice of strategy is far from clear, we 
chose to investigate a research question 
related to process control because, to 
our knowledge, process control has not 
been achieved using EEG signals 
associated with natural, multi-joint, 
three-dimensional center-out hand 
movements. 

B. EEG Decoding Studies 
The most common objective of EEG 

decoding studies is the discrete 
classification of single trials of overt or 
covert motor tasks related either directly 
[11,12] or indirectly [10,13] to the 
desired movement. An exceptional 
series of EEG studies achieved process 
control by training subjects to modulate 
sensorimotor rhythms to control a 
 

IV. DISCUSSION 
The extent to which kinematic information about hand 

movements may be decoded from EEG signals is currently 
unknown. To address this gap, we demonstrated that three-
dimensional hand kinematics of natural, multi-joint, center-
out movements are continuously decodable from EEG 
signals. 

A. Process Control vs. Goal Selection 
A current research question within the community of 

neural prostheses researchers is whether process control or 
goal selection is the most appropriate strategy for BCI 
systems [20]. Process control seeks to provide continuous 
interaction at high-speeds with movement of the end effector 
fully controlled by the subject. Goal selection requires 
decoding only the target to be acquired with the details of 
how to move the end effector handled by software. Most 
scalp recordings employ goal selection presumably, in 

cursor in two-dimensions [14,21]. Besides our study 
incorporating an extra spatial dimension, it differs from 
[14,21] by decoding natural movements to better elucidate 
the neural code for hand movement. We believe that a 
clearer representation of the neural code will significantly 
reduce the time required to train subjects to use a BCI 
system. The fact that we only need about 280 s (70 trials) of 
training data for each subject supports our assertion. 

C.  MEG Decoding Studies 
To our knowledge, only three studies with scalp 

recordings explicitly sought continuous decoding of hand / 
tool kinematics, all using MEG [16-19]. Neither [16] nor 
[17] employed center-out movements that are the standard 
for comparison among decoding studies associated with BCI 
systems. In [18,19], a cued, center-out, two-dimensional 
drawing task was employed, and the CCs between measured 
and decoded hand kinematics were higher than those of the 
current study. The source of this discrepancy in accuracy is 
uncertain but could be due to any of the following unique 
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characteristics of the current study: three-dimensional 
movement, greater extent of multi-joint movement, self-
initiated movement, self-selected targets, and visual 
feedback provided only through peripheral vision. While 
MEG is a helpful tool for non-invasive decoding studies, its 
confinement to a laboratory setting renders it unsuitable for a 
wearable ambulatory system. 

D. Intracranial Decoding Studies 
Most intracranial studies that decoded neuronal signals 

acquired with microwires or microelectrode arrays aimed to 
implement process control of a cursor of robotic arm [1-
4,8,9]. While most other intracranial studies decoded local 
field potential (LFP) recordings for goal selection, some 
exceptional LFP studies were also motivated by process 
control strategies [5-7]. One of the most striking results of 
our study is that, regardless of the fact that activity recorded 
at an EEG sensor constitutes the firing of millions of 
neurons, hand kinematics can be decoded from EEG. In 
addition to the advantage of the non-invasive nature of EEG, 
this modality captures a more global representation of the 
neural system being decoded. 

E. Eye and Muscle Movements Did Not Aid Decoding 
Undesirable electrical activity from eye or muscle 

movements potentially confounds the interpretation of 
results from EEG, MEG, and ECoG studies [22]. In our 
study, to ensure that eye movements did not aid decoding, 
we required subjects to fixate a central location for the 
duration of the experiment and to only blink when their hand 
was at the central location. We visually monitored their eyes 
to ensure the absence of movement as well as recorded 
horizontal and vertical electrooculograms for off-line 
analysis. Regarding muscle activity, we ran the decoding 
analysis after low-pass filtering the kinematics at 2 Hz. 
Since muscle activity is unlikely to exist below this cutoff 
frequency, we affirm the unlikelihood that muscle activity 
aided decoding. 

V. CONCLUSION 
In conclusion, we countered the prevailing notion that 

EEG signals do not possess decodable information about 
detailed, complex hand movements. In the future, we plan to 
investigate the feasibility of real-time control of a cursor or 
virtual arm by decoding imagined three-dimensional hand 
movements. Our expectation is that, by providing subjects 
with visual feedback of the decoder output, they will adapt 
their EEG signals to overcome any deficiencies in off-line 
decoding accuracy. We hope that this study serves to 
encourage continued advances in non-invasive BCI systems 
for controlling neuromotor prostheses in real time. 
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