
  

  

Abstract— In order to enhance controllability of a 
myoelectric hand, we focus on a gap between the time when a 
human intends to move a myoelectric hand and the time when 
the hand actually moves (i.e., time delay). Normally, the 
myoelectric hand users dislike the time delay because it makes 
them feel uncomfortable. However, the users learn the time 
delay within some time ranges and, eventually, get feel 
comfortable to operate the hand. Thus, we assume, if we reveal 
the acceptable delay time (i.e., the time the users accept the gap 
with their learning ability), we can provide more time in a 
human intention discrimination process, and enhance its success 
rate. Therefore, we developed a mobile myoelectric hand system 
with an embedded linux computer, and conducted a ball catch 
experiment: we investigate the acceptable delay time by adding 
the delay time (i.e., 120[ms], 170[ms], 220[ms], 270[ms], 
320[ms]) into the human intention discrimination process. As a 
result, we confirmed that the max accept delay time was 
approximately 170 [ms] that achieves 61% success rate. 

I. INTRODUCTION 
AND motions are the most basic activity in our daily life. 
Therefore, it is important to develop a human-like 

myoelectric hand in order to enhance quality of life (QOL) for 
amputees.  
The myoelectric hand system consists of a mechanical hand 

with motors, a computer (i.e., a human intention 
discrimination process and motor motion plan), and a 
microchip controller (i.e., motor control). As for the control, 
the control input is electricmyographic (EMG) signals of 
amputee’s remained forearm muscles. The EMG is the 
electric potential generated when muscles contracted and is 
measured with a surface electromyogram (EMG) sensor, 
which placed on the human skin. Then, the output (i.e., hand 
motions) are generated as follows: (1) EMG signals are 
measured from the user’s body; (2) the human intention 
discrimination system analyzes the EMG signals, and forms a 
feature vector; (3) the discrimination system identifies the 
intended motion of the user by comparing the feature vector 
with the feature vectors that acquired at the learning phase; 
(4) the motors in the myoelectric hand are controlled with the 
pre-planed motion pattern corresponding to the intended 
motion. 
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Thus, the process to discriminate human intended motions is 
one of the most important issues in both commerce and 
research fields. However, the mechanical hand designs in 
those two fields take different direction. For example, 
Myobock system (Otto bock) is the most popular myoelectric 
hand in the commerce, and has only two DOF. It is because 
that the few DOF achieves light weight, small size, high drive, 
and high controllability, and it succeeds to provide high 
reliability to the users.   
Meanwhile, the target in the research field is the mimic of 

the human hand (i.e., multi-DOF). Thus, they generally 
develop 5 finger hands and mainly focus on enhancing its 
controllability: that is, they try to improve the human 
intention discrimination process from biological signals. For 
example, Kato and Yokoi developed 5 finger hands 
mimicked the human tendon mechanism, and implemented an 
EMG-to-Motion discrimination system: the discrimination 
system analyzes the frequency and amplitude of the user’s 
EMG, and forms the 27 dimension feature vector; the 
three-layer neural network, which contains the relationships 
between feature vectors and hand motions of the users, 
generate the user’s intended motion. As the result, their 
myoelectric realize 8 motions with 3 EMG sensors [1]. 
In our research, we also target to enhance the discrimination 

on a human-hand like myoelectric hand. Especially, we focus 
on human learn ability to accommodate “delay time” to its 
system. As for time delay in the human system, it is 
physiologically proved that the human hand movement has 
several delay time: (1) A control signal from the brain to hand 
is delivered thought nerve systems. The speed of the signal is 
approximately 50 [m/s]; (2) When human movement is 
perturbed, the movement is stabilized with sensory 
information (i.e., sensory feedback loops). The sensory 
feedback loops also has some time delay: the short-loop 
feedback (e.g., spinal networks) has approx. 30 [ms] to 50 
[ms] time delay [2]; the long-loop feedback (e.g., the cortex) 
has approx. 100 [ms] to 150 [ms] time delay [3].  
Thus, local systems in human body naturally have delay 

time. However, the human learning ability accommodates the 
delay time to the system, and does not feel uncomfortable 
during the dexterous motions. So far, such ability is partially 
demonstrated with psychophysical experiments. Lee 
proposed τ-hypothesis from the ecological viewpoint [4]. 
However, this hypothesis is setup in non-gravity 
environments. Meanwhile, Koike conducted a virtual reality 
experiment from internal model hypothesis. He illustrated 
that human could learn multi-acceleration and could estimate 

Control Strategy for a Myoelectric Hand: Measuring Acceptable Time Delay
in Human Intention Discrimination  

Tatsuhiro Nakamura, Kahori Kita, Ryu Kato, Kojiro Matsushita, and Yokoi Hiroshi 

H 

5044

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

Time To Contact (TTC) [5]. These results suggest that human 
can adapt its internal model to the task with the vision input.  
As summary of the time delay in human, the time delay 

naturally exists and the vision feedback greatly contributes to 
the time delay adaptation. However, as for the myoelectric 
hands, the researchers conventionally aim at implementing 
efficient algorithms and try to shorten its computational time 
in order to discriminate as many human intentions as possible. 
That is, the discrimination process time is normally 
determined by the original computation time and tends to set 
as short as possible (i.e., it is because the researchers believe 
that, the slower the myoelectric hand starts moving, the more 
the user feels uncomfortable).  
Therefore, our final goal in this research is to apply the 

human adaptation system for our myoelectric hand system, 
and to utilize the full acceptable delay time for the 
discrimination process. Here, we define the delay time as the 
gap time between the time when the user of a myoelectric 
hand intends to move the hand and the time when the hand 
starts moving. 
As the first step, we investigate the acceptable delay time on 

the myoelectric hand, and try to quantitatively show a 
trade-off between the discrimination performance and the 
user’s comfort in this paper. For the investigation, we choose 
a ball catch task with the following reasons: the ball catch 
task requires a quick response so that it is clear to reveal the 
acceptable delay time / Time To Contact (TTC), which is 
estimated with the subject’s vision feedback before the 
subject catches a tossed ball with his hands; for the 
convenience, the evaluation of the hand performance is 
defined as the success rate of ball catch. 
In this paper, we first describe a mobile myoelectric hand 

system for a health subject. Next, we explain setups of the 
ball-catch experiment. Then, we show our results such as the 
delay time and the success rate. Finally, we discuss and 
conclude the paper.  

II. MYOELECTRIC HAND SYSTEM FOR A HEALTHY SUBJECT 
The mobile myoelectric hand system consists of a 

myoelectric hand with a socket for a healthy subject, a mobile 
embedded linux computer, and a motor controller and RC 
servo motors. This system is targeted for a health subject and 
the two reasons are described as follows: (1) it does not 
matter if subjects of the experiments on time delay are 
amputee or healthy people. So, we developed a hand socket 
for a health subject, and try to collect as many data from 
healthy subjects as possible; (2) on ball catch experiments, 
the user need to move quick so that we try to eliminate cables 
to installed equipments (e.g., computer). So, we transplanted 
the discrimination process in a desktop computer into a 
mobile embedded linux PC, and achieved to enhance the 
user’s mobility.  
In the following sections, we describe the details of three 
parts, and explain the discrimination process and list the 
computational time in the system. 
 
 

A. A Myoelectric Hand with a Socket for Healthy Subject 
The hand part is the five finger type robotic hand developed 

by Hiroshi [1]. The interference wire-tendon mechanism is 
applied for the hand design so that 5 DOFs are free joints and 
13 DOFs are controlled joints (totally 18 DOFs). Moreover, 
the hand part does not have any actuators inside because of 
the wire-tendon mechanism (The detail is described in the 
section “RC Servo Motor unit”). 
The Socket is specially designed for a healthy subject: that is, 
there is a grip bar inside the socket. As an advantage of the 
grip, when the myoelectric hand grasps an object, the user 
acquires sensor feedback (i.e., pressure) from the grip. That is, 
the socket provides the illusion of sensor feedback easily (i.e., 
pseudo-pressure feedback). We believe that it somehow 
contributes that the user controls the myoelectric hand. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1  Appearance of the mobile myoelectric hand system 

 
Fig 2 Myoelectric hand socket for healthy hand 

B. RC Servo Motor unit 
There are 13 RC servo motors (11 Motors: GWS Micro 

2BBMG, 2 Motors:  Kondo Kagaku KRS2350ICS) in RC 
servo motor unit. As an advantage, we applied a wire-tendon 
mechanism for the hand so that the fingers actuated through 
wires and the RC servo unit can be placed anywhere on the 
user. Therefore, the unit is placed in the waist. 

C. A Mobile Embedded Linux Computer 
The mobile embedded linux computer consists of four 

parts: an embedded linux computer “Gumstix” and a 
microchip “Robostix”, EMG sensors, and a control pannel. 
The total size of the system is 85[mm]*58[mm]*24[mm]. It 
lasts 11 hours with 4 batteries (NIMH 3A). 

The embedded computer works as follows: (1) EMG 
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sensors acquire surface EMG signals at the sampling rate 1.6 
[kHz] and feeds into Robostix at the resolution 8 [bit]. (2) 
Robostix sends the EMG values to Gumstix via a I2C 
communication; (3) Gumstix process human intention 
discrimination, and identifies a human intended motion, and 
the corresponding motor patterns are transferred to the motor 
controller via a serial communication. Actually, there are two 
phases (i.e., teaching phase and practice phase) to use the 
system, and the description above is about the practice phase. 
The details of both phases are in the next section. The control 
panel is used only in the teaching phase. 
 
 
 
 
 
 
 
 
 
 
 

Fig 3 mobile Motion classification hardware 
1) Discrimination Process 

The discrimination process has two phases as shown in 
Fig.3: teaching phase and practice phase. The teaching phase 
is in charge of the process that the computer learns the 
relationship between the EMG signals and the human 
motions: (1) the user pushes Button 1 on the control panel, 
and the myoelectric hand moves as a pre-planed motor pattern 
(i.e., each button corresponds to each pre-planed motor 
motion on the myoelectric hand)  and, during it, the user 
makes a hand motion and feeds EMG signals into the 
embedded computer; (2) the embedded computer has two 
algorithms (i.e., the First Fourier Transfer (FFT) algorithm 
and a 3-layer neural network with the back propagation 
algorithm). The FFT continuously analyzes the EMG data 
(i.e., every 128 sampling time), and generates 27 dimension 
feature vectors. Then, the 3-layer neural network (i.e., 24 
input neurons, 32 hidden neurons, and 8 output neurons) 
learns the relationship between the feature vectors and the 
corresponded pre-planed motion (i.e., each button on the 
control panel) with the back propagation algorithm. The 
processes (1) to (3) present 1 myoelectric hand motion/1 
button. 
In practice phase, the control input is the EMG sensors. That 
is, the EMG signals are fed into the computer, and the 
computer generates one feature vector at each control time 
(This process is the same as the process in the teaching phase). 
Then, the feature vector is directly fed into the 3-layer neural 
network, and 8 values are acquired from the 8 output neurons 
corresponding to the 8 pre-planed motor patterns. Finally, a 
neuron, which is the highest value among the 8 neurons and 
more than 0.5 values, is chosen and the corresponding motor 
pattern is transferred to the motor control. 

Fig 4 Classification algorithm 
1) Computational time for the  discrimination process 

We measured the process in the practice phase 1000 times, 
and listed the computation time at each process in Table 1.  

Table 1 Computational Time at Each Process 

III. EXPERIMENT: CATCH BALL 
Fig.5 shows experimental environments. The Subject catch 

a tossed ball with the myoelectric hand. 40 balls are tossed 
every 10 seconds. The initial ball speed is about 5.2[m/s] and 
its angle is about π/3[rad]. So the subject catches the ball at 
1[m] height above the ground. 
For investigating the acceptable delay time, we set specific 

additional time such as 0[ms], 50[ms], 100[ms], 150[ms], and 
200[ms] into the discrimination process (Referring to the 
Table 1, we estimate the based delay time 122±12 [ms] and, 
therefore, the actual time delay for the user would be 120 [ms], 
170 [ms], 220 [ms], 270 [ms], and 320 [ms]), and record ball 
catch success rates at each delay time.  

We utilize EMG sensors, bending sensors, and pressure 
sensors. The EMG sensors are placed on the palmaris longus 
muscle and the biceps brachii muscle. The bending sensors 
are used to record the joint angle of the myoelectic hand. The 
pressure sensors are placed on the palm, and target to measure 
the timing of ball catches. 
 
 
 
 
 
 
 
 
 
 
 

Fig 5 Experiment environments 

  
Mean 

value[ms] 
Standard 

deviation [ms] 
128points FFT 0.432 0.0004 

Data transmition 
I2c fast mode 22.8 5.38 

Neural Network 0.768 0.0001 
Total 50.24 0.142 
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Table 2 shows the success rate of ball catch experiments. 
Fig.6 (a)-(e) show the EMG data at the palmaris longus 
muscle and the biceps brachii muscle, and the pressure 
sensors on the hand and the bending sensors of the seconds 
finger. It is clear that the pressure sensors indicate the ball 
catch timing, and the bending sensor shows the trajectory of 
the finger angle. 

Table 2 Success rate at each time delay conditions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6 Emg signal of palmaris longus muscle and biceps brachii 
muscle, pressure sensor on the palm, and bending sensor along with 

second finger. (a) to (e) in each delay conditions. 
 
Table 2 shows the results at the delay time 0 [ms] and 50 

[ms]. The subject caught the balls at over 50% success rate. 
Especially at 50 [ms], the success rate is superior to the rate at 
0 [ms]. We assume that it is influenced by its experiment 
procedure: that is, the time delay 50[ms] is conducted after 
the time delay 0[ms], and the subjects are well-trained. 

In Fig. 6(a) and (b), we confirmed that the transition of the 
pressure sensors indicates the timing of the ball catch. 
Especially, the timing is close to the timing that the fingers 
moves (i.e., the bending sensors recorded the finger motions). 
This result suggests that subject adapted to the delay time 
0[ms] and 50[ms]. 
  The average success rates dropped to 32.5 [%] at 100 [ms] 
and 40 [%] at 50 [ms] although the subject should be well 
trained compared to the delay time 0 [ms] and 50 [ms] (i.e., 
early experimental conditions).  

It is known that human is able to adapt approximately 200 
[ms] to 300 [ms] delay time with the vision feedback. At 
100[ms], we assume that the subjects feel their tactile sensor 
feedback with the healthy hand at the ball catch. In short, 
before the myoelectric hand moves, the tactile sensor 
feedback possible substituted for the vision feedback.  
 At the delay time 200[ms], it was hard for the subjects to 
catch the balls. We assume that the subjects are required to 
estimate the position where to catch without visual 
information of 322[ms] before the catch timing. 

IV. CONCLUSION 
In this research, we aims at enhancing the EMG-to-Motion 

discrimination process for a myoelectric hand, and focus on 
acceptable delay time, which human can adapts: that is, 
conventionally the time delay in the system is avoided 
because the user feels uncomfortable. However in our 
strategy, we try to reveal the maximum acceptable delay time 
which the user does not feel uncomfortable, and try to spend 
the max time for the EMG-to-Motion discrimination. Then in 
this paper, we developed a mobile myoelectric hand system, 
and conducted ball-catch experiments for investigating the 
acceptable delay time. As results, the relation between the 
success rates of ball catches and the delay time (i.e., 120 [ms], 
170 [ms], 220 [ms], 270 [ms], 320 [ms]) demonstrated that 
the delay time 170[ms] is the maximum acceptable delay 
time. 
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Additional 
delay 

time[ms] 

1st 
~10th 
catch 

11th 
~20th 
catch  

21 th 
~30th 
catch 

31 th 
~40th 
catch 

Averag
e rate 

0 50% 50% 50% 50% 50% 

50 80% 60% 70% 80% 72.5%

100 30% 30% 20% 50% 32.5%

150 30% 30% 60% 40% 40% 

200 10% 0% 0% 10% 5% 

Fig 6 (a)  In condition of delay 0 [ms] Fig 6 (b)  In condition of delay 50 [ms]

Fig 6 (c)  In condition of delay 100 [ms] Fig 6 (d)  In condition of delay 150 [ms]

Fig 6 (e)  In condition of delay 200 [ms] 

Fig 6 (e)  In condition of delay 200 [ms]
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