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Abstract— This paper presents a soft tissue target stabiliza-
tion method during needle insertion procedures. The object
considered in this study may have fixed boundary sections and
limited surface exposed to external manipulation. The target
must be stabilized along the needle path during the needle
insertion. It is assumed that a paddle with fixed geometry is
available for deformable object manipulation. Two approaches
were considered for the target stabilization problem. The
first approach uses a static paddle placed on the available
boundary, at a strategic location, such that the target motion
orthogonal to the needle axis is minimized during the needle
insertion. The second approach uses a dynamic paddle attached
to the available boundary for the active compensation of
the target deflection. In this paper we analyze the optimal
paddle placement for the two proposed approaches and present
initial numerical results for the case of homogeneous and
nonhomogeneous deformable objects. The results show that the
first approach is sensitive to possible non-homogeneities in the
object, therefore it is not robust to modeling errors. The results
also show that optimal placement for the second approach is
less sensitive to modeling errors, making it more desirable for
physical applications.

I. INTRODUCTION

Current image guided needle insertion procedures are

prone to performance errors due to soft tissue deformations

that occur as the needle is inserted. Ignoring this matter may

result in probing areas of tissue outside a targeted location

determined in pre-operative planning images. Depending on

the application, this can give misleading biopsy samples or

poor implantation of a certain drug or marker. The ability to

predict and control these tissue disturbances can be beneficial

in terms of patient care and sample location reliability.

To this date, the main two approaches that have been

proposed to overcome the target mobility issue during nee-

dle insertion, are needle steering in tissue and soft tissue

manipulation. DiMaio and Salcudean [2] proposed a needle

steering algorithm based on a linear finite element model of

the tissue interacting with a nonlinear needle model. While

the results presented are very promising it is hard to extend

them to arbitrary configurations. Alterovitz et al. performed

beveled needle maneuvering within tissue, such as obstacle
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avoidance, to reach a target position [1] with the assumption

that the needle was much more flexible than the tissue. Both

approaches are computationally expensive, thus being hard

to implement in real time.

In the latter approach, Mallapragada et al. showed the

ability to manipulate object boundaries to force targeted

points or regions in line with a needle as it was being inserted

into the object in real time [4]. This approach was based

on the results that Wada et al. achieved on the guidance of

multiple control points through indirect object deformations

[3].

In this paper, we analyze stabilization of a soft tissue

target during needle insertion for the case where the object

is subject to predefined fixed boundary conditions. The tool

available for target stabilization consists of a paddle with

known geometry. This tool can be attached to the deformable

object boundary and be used for manipulation. Moreover, it

is considered that paddle-tissue contact point is confined to

a well defined boundary subset. This models realistically the

configuration in which the user has a tool that can be used to

stabilize the soft tissue, but is restricted on the possibilities

of where to attach the tool to the tissue.

In the present study it is assumed that the needle insertion

is performed on a linear path; thus the goal is to restrict

the target motion orthogonal to the needle axis. Two target

stabilization approaches are considered. In the first approach

the paddle is used as a static fixture during needle insertion.

In the second approach the paddle is used for the dynamic

adjustment of the target position during the needle insertion.

This paper analyzes the optimal paddle placement for the

two approaches. The analysis is based on mesh-less nonlinear

deformable models with tissue like characteristics.

II. DESCRIPTION OF DEFORMABLE OBJECT

MODEL

The object model used in this paper is a continuum

deformable body with an attached coordinate system. The

initial body configuration is represented by uppercase X
with a domain of ΩX and boundary ΓX . The deformed

configuration is represented by lower case x, and occupies

the region Ωx with boundary Γx. The deformation of the

body is a one to one function φ , where x = φ(X , t) and
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the displacement is represented by u = φ(X , t)− X . It is

assumed that movement of the body is achieved solely

through essential boundary Γg
x displacements g, resulting

from the body interacting with its external environment. The

task left is to calculate the displacement at coordinate u(X , t)
based on the characteristics of the defined object.

The soft tissue can be modeled as a hyperelastic material

described by a strain energy function W . Then, the consti-

tutive 2nd Piola-Kirchhoff stress relations, connecting the

derivative of the current strain energy with respect to the

strain measure, is computed

Si j =
∂W
∂Ei j

(1)

where F = ∂xi
∂Xj

is the deformation gradient and E =
1
2

(
FT F − I

)
is the Green Lagrangian strain. The partial

derivative equations describing the static deformation of the

object

τi j, j +bi = 0 (2)

subject to displacements on the essential boundaries

u = g on Γg
x (3)

where τi j is the Cauchy Stress derived from the 2nd Piola-

Kirchhoff stress, bi the body forces.

Further, the nonlinear partial differential equations describ-

ing the deformable object are linearized according to [5],

resulting in a set of incremental equations. These are dis-

cretized using the RKPM method [6]. In RKPM formulation

the displacement at coordinate X is expressed as a linear

combination of particle attached shape functions ψ

ui(X , t) =
NP

∑
I=1

ψI(X)diI(t) (4)

where NP the total number of particles and dI the coef-

ficient attached to particle I. Using the previous expression

plugged into the incremental equation, results in a linear sys-

tem of equations in increments of coefficients dI . One draw-

back of the RKPM method is that the essential boundary

conditions require special treatment because kernel functions

do not have dirac delta property. In this implementation the

RKPM shape functions were modified to accommodate the

essential boundary using the approach described in [6]. Fi-

nally, employing nodal integration in the linearized equation

yields the incremental matrix equation

Kδd = δ f (5)

where K is a stiffness matrix, δ f is global force increment

vector and δd represents the nodal displacements related by

the RKPM shape function. It should be noted that methods

other than RKPM can be used to get the same equation as

5. However, the mesh-less methods proved to be more stable

than the finite element methods for large deformations [6].

III. SIMULATION RESULTS

In this study, all simulations were performed using a planar

object stabilized against an immobile boundary as shown in

Figure 1. This object configuration was chosen to provide

limited access to boundary points that could interact with

the external environment. The targeted region of the object

was stabilized through object boundary manipulations during

a needle insertion procedure. It was assumed that there was

no boundary slippage against the inserted needle shaft, and

the needle insertion was modeled as a uniform compression

of the three indicated nodal points in a straight line trajectory

throughout the simulation. Further, Fung’s Strain Energy

function

W = 1/2Ei jAi jklEkl + c/2eEi jCi jklEkl (6)

Fig. 1. Deformed object model indicating immobile boundary, needle
insertion, stabilizing paddle, a non-homogeneous region, and a target point.

was employed to help define the object characteristics,

where c is a positive constant, E is the strain tensor repre-

sented as a vector and A and C are symmetric second-rank

tensors. The values employed for A and C are listed in table

I, and were determined through tissue measurement in [7].

Ai jkl Value Ci jkl Value
A(0,0,0,0) 1020 C(0,0,0,0) 3.5
A(1,1,1,1) 1020 C(1,1,1,1) 3.5
A(0,1,0,1) 254 C(0,1,0,1) 0.5
A(1,0,1,0) 254 C(1,0,1,0) 0.5
A(0,0,1,1) 383 C(0,0,1,1) 1.5
A(1,1,0,0) 383 C(1,1,0,0) 1.5
A(0,1,1,0) 383 C(0,1,1,0) 1.5
A(1,0,0,1) 383 C(1,0,0,1) 1.5

TABLE I

VALUES FOR A AND C TENSORS. ALL VALUES NOT INDICATED ARE

ZERO.
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Target Stabilization was performed in position control,

making the reactive forces of the tissue boundary negligible

compared to the imposed paddle forces. These paddles were

oriented parallel to the tissue boundary and strictly acted

on the boundary perpendicular to this axis. Further, their

geometry was restricted to connect two adjacent boundary

points on the essential boundary for the positions listed in

Table II. These constraints were imposed from a practical

perspective, since one standardized tool is typically used

for a given procedure even though various tools may be

available. Also, a paddle covering two adjacent points is

the smallest width that could be used in this model case,

considering that the paddle must interact with specific nodes

on the essential boundary. As a result, a maximum number

of paddle positions in the accessible area are given.

Paddle Index Coordinates(x,y)
1 (0.4,0.1),(0.3,0.2)
2 (0.3,0.2),(0.2,0.3)
3 (0.2,0.3),(0.1,0.4)
4 (0.1,0.4),(0.0,0.5)
5 (0.0,0.5),(0.0,0.6)

TABLE II

INDEX RELATING TO PADDLE POSITIONS.

A. Target Point Stabilization with Static Paddle

Using a homogeneous object model, a needle initially in

line with the desired position was inserted into the object

and continued to follow a straight trajectory. During the in-

sertion, the paddle was fixed. The displacement of the target

was computed and recorded using the deformable model.

The fixture positions were incrementally changed to cover

successive boundary nodal points on the object, beginning

at the position shown in Figure 1. It must be noted that

there was a limited boundary perimeter to which the fixtures

could be applied to. The measure of paddle placement quality

was the maximum displacement of the target in a direction

orthogonal to the needle axis. For the model presented in

Figure 1, Figure 2 depicts the displacement of the target

point on the x axis as a function of paddle position along the

object boundary. The results show that the optimal placement

corresponds to position 4.

Next, a non-homogeneous square region was implemented

into the object as shown in Figure 1, with a stiffness coef-

ficient 100x that of the surrounding object, at indices (0.6,

0.4), (0.7, 0.4), (0.7 0.3), (0.6, 0.3) . Emulating the previous

procedure, the results are shown below in Figure 3. The

results show that the optimal paddle placement correspond to

position 2. This indicates that the static paddle placement is

a function of tissue structure justifying the use of a dynamic

paddle to manipulate the target.

B. Stabilization of Targeted Point with Dynamic Paddle

In this section we compute the placement of a dynamic

paddle that provides the best controllability over the target

point. A simple control law based on a Jacobian estimate

of the transformation between a boundary displacement and
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Fig. 2. Target point error in the axis orthogonal to the needle axis of a
homogeneous object as a function of paddle position.
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Fig. 3. Target point error in the axis orthogonal to the needle axis of a
non-homogeneous object as a function of paddle position.

control point displacement can be used for the control of

the target [8]. Then the controllability measure for a certain

paddle position is defined as the norm of the required paddle

displacement in order to achieve a given displacement of

the target in the direction orthogonal to the needle axis. In

particular for the chosen configuration this is ||J−1[10]T ||.
The Jacobian is estimated by displacing the paddle with a

small amount in the principle directions and recording the

induced displacement in the target. For the assumed config-

uration the optimal paddle position is the one that minimizes

the controllability measure CM = ||J−1[10]T ||, consequently

providing the best controllability in the x dimension. Table

III shows the controllability value as a function of paddle

position for homogeneous and nonhomogeneous deformable

object. It is clear that paddle position 3 provided the greatest

effect on the target point.
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Paddle Index Homogeneous Object Non-Homogeneous Object
1 4.7822 6.3556
2 4.1544 5.3583
3 3.2715 4.8749
4 3.3748 5.4552
5 3.3999 5.9523

TABLE III

CM AS A RESULT OF CALCULATED JACOBIAN MATRICES.

IV. DISCUSSION

In previous soft object manipulation model approaches

to straight needle insertions, it is important to note that an

assumption was made allowing for external interaction with

any point on the object boundary. Relying on this assumption

is rather unrealistic due to anatomical constraints that could

make such procedures unfeasible. The deformable object

model developed in this study is prescribed by anatomy, such

that only a portion of the object is accessible. Also, the user

is limited to a specific sized paddle geometry.

In the static paddle case, paddle position 4 gives the best

target point stabilizing effect for the homogeneous object, as

this represents the smallest target point displacement in the

axis orthogonal to the needle axis. Paddle position 2 becomes

the optimal position when a non-homogeneous region is

added to the object. It is clear from the results that a shift in

the target point displacement occurs as an impurity is added

to the object. In this particular case, as shown in Figure 3,

the shift is in the negative x direction.

From these results it is shown that a stabilizing paddle

position can be computed for a given targeted region, al-

though it is quite limited when the object becomes non-

homogeneous. If more non-homogeneous areas are added,

the control point deviation becomes even more difficult to

predict. Due to this limitation, utilizing dynamic paddle

manipulations of the object is justified.

In the case of a dynamic paddle we seek for the place-

ment that provides the best controllability over the target.

The results show that such measure is not constant over

the possible placements. For the considered geometry the

computations show that position number 3 is optimal for

both the homogeneous and non-homogeneous object. This

suggests that dynamic paddle stabilization is a better choice

than using a static fixture. These results also show that for

deformable objects subject to certain fixed boundaries the

target stabilization with respect to needle direction can be

achieved using only one actuator. Moreover, the proposed

approach provides also the direction in which the paddle has

to be moved in order to achieve maximum displacement in

the direction orthogonal to the needle axis. For the assumed

model this is J−1[10]T .

To address the issue of extending the model dimensional

properties, the model can be extended to three dimensions.

However, this makes the target stabilization problem more

complex since an additional paddle needs to be utilized to

control the newly imposed degree of freedom. The planar

model was used to obtain preliminary results since it could

be quickly prototyped.

V. CONCLUSION

In this study, a mesh-less (RKPM) deformable object

model was used to study the stabilizability of a soft tissue

target during needle insertion. The deformable object was

considered as having an immobile surface section and a

limited accessible boundary for external paddle interaction.

Two specific cases were analyzed; the placement of a static

paddle and the placement of a dynamic paddle.

Two different optimality criteria were defined for the

characterization of the best paddle placement for the static

and the dynamic cases. The results showed that the optimal

placement of a static paddle varies greatly with the object

properties, whereas the optimal placement for the dynamic

case was less sensitive to changes in object structure. Al-

though the results were obtained for a particular geometry

they indicate that a dynamic paddle is more suitable for the

target stabilization during needle insertions.

Future developments will include the implementation of

a target stabilization algorithm using a physical model of

various shape complexities and model constituents. As well

as improving computational efficiency for the model solver.
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