
  

  

Abstract— The clinical management of children with 
cerebral palsy (CP) relies on monitoring changes in the severity 
of gait abnormalities and on planning appropriate clinical 
interventions. Currently available technology does not make it 
possible to perform clinical gait evaluations as often as it would 
be desirable from a clinical standpoint. The use of wearable 
technology (e.g. a sensorized shoe) could provide an effective 
means to monitor changes in the severity of gait abnormalities 
in children with CP. In this paper, we studied a group of 
children with CP who showed an equinus (i.e. toe-walking) gait 
pattern, a gait abnormality often observed in children with CP. 
The aim of the study was to determine the feasibility of relying 
upon a sensorized shoe to assess changes in the severity of toe-
walking. We demonstrated that it is possible to use features 
extracted from the center of pressure trajectory and ankle 
kinematics to predict the severity of toe-walking. Our results 
motivate the development and clinical testing of a sensorized 
shoe to assess changes in gait patterns that accompany the 
development, and the response to clinical interventions, of 
children with CP. 

I. INTRODUCTION 
EREBRAL palsy (CP) describes a group of permanent 
disorders of the development of movement and posture, 

that are attributed to non-progressive disturbances that 
occurred in the developing fetal or infant brain [1]. In the 
United States, approximately 10,000 infants and babies are 
diagnosed with CP every year [2]. CP can be caused by a 
metabolic problem before birth, by a lack of oxygen 
reaching the fetus during delivery, by an infection or stroke 
either before or after birth or by other medical complications 
during childhood [3]. These events lead to impaired balance, 
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gait abnormalities, poor coordination, abnormal reflexes, and 
a delay in developing motor skills. Physical therapy, 
orthoses, botulinum toxin injections and surgery, are tools 
available to clinicians to help control and improve gait in 
children with CP. To determine which intervention is most 
appropriate to restore mobility, clinical evaluations are 
carried out to assess impairments and functional limitations 
and gait analyses are performed using specialized 
equipment [4]. Frequent assessments are necessary as the 
child develops and to evaluate the child’s response to 
interventions over time. 

Current approaches to gait analysis rely upon (1) camera-
based systems, which provide clinicians with detailed 
information on joints kinematics and kinetics, and 
(2) observational tools that are based on the qualitative 
assessment (via visual inspection) of the patient’s patterns of 
movement. These approaches are not suitable for performing 
assessments of the severity of gait abnormalities in children 
with CP as often as it would be desirable. This is due to the 
limited access to these assessment procedures. A wearable 
system such as a sensorized shoe would offer a means of 
monitoring children in the field. This would enable the 
assessment of outcomes to interventions and facilitate 
treatment planning, thus improving the quality of care for 
children with CP. 

In this paper, we present work aimed at determining the 
feasibility of developing a sensorized shoe for field 
assessments of the severity of toe-walking in children with 
CP. Our hypothesis is that the severity of gait abnormalities 
associated with toe-walking that is captured via 
observational gait analysis can be assessed via analysis of 
the trajectory of the center of pressure (CoP) and the 
kinematics of the ankle. These are measures that could be 
gathered using a sensorized shoe. Our goal is to develop 
methods that perform comparably to a clinical scale for 
observational gait analysis. Using the proposed approach we 
hope to offer a means of performing reliable longitudinal 
field assessments in children with CP. 

II. METHODS 

A. Dataset description 
The dataset for this study comprised recordings from 

children with CP who underwent a gait evaluation at 
Spaulding Rehabilitation Hospital. It included data from 30 
children with CP (age 9.2 ± 2.9 years) who showed an 
equinus gait pattern, i.e. a pattern in which the foot is 
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predominantly plantarflexed during the gait cycle. Children 
affected by this kind of gait deviation are referred as “toe-
walkers”. The total number of trials included in the study 
was 239. The number of trials per subject was fairly even. 

Gait trials were performed on a level walkway in the 
Motion Analysis Laboratory. Reflective markers were 
attached to pelvis and legs of each child using a standardized 
setup for the study of lower limb biomechanics. Kinematic 
curves were reconstructed from trajectories of the markers 
recorded by an 8-camera motion capture system (Vicon 512, 
Vicon Peak, Oxford, UK) using a standard biomechanical 
model (Vicon Plug-in-Gait). Center of pressure trajectories 
were estimated using two staggered force platforms (AMTI, 
Watertown, MA) embedded in the walkway. 

B. Data processing 
Kinematic data (sampled at 120Hz) were extracted for 

each stride (from foot contact to foot contact of the same 
foot) and then resampled so as to have 101 samples for each 
stride. Data from the force platforms were filtered with a 
Type II, 4th order Chebyshev filter with cut-off frequency of 
20 Hz and then segmented and resampled as per the 
kinematic data. The CoP trajectories were normalized by the 
foot length so as to allow comparison of features derived 
from CoP trajectories from children with different foot sizes. 

C. Feature extraction 
Examples of the CoP trajectories, extracted from trials of 

children affected by different severities of toe-walking, are 
shown in Figure 1. The trajectories are clearly different and 
are characterized by a decreased AP range of movement 
with increased severity of toe-walking. Other differences are 
also evident such as how well the trajectory of the CoP can 
be approximated via linear regression. Similar 
considerations were made in relation to ankle kinematics. 
Based on visual observation of the CoP trajectories and 
ankle kinematics, we selected a set of features that we 

expected to capture the differences between datasets 
recorded from children with different levels of severity of 
toe-walking. The feature-set is summarized in Table 1. 

D. Edinburgh Visual Scale 
We used the Edinburgh Visual Scale developed by Read 

et al. [5] to assess the severity of toe walking. This scale has 
been proposed and validated for the assessment of gait 
deviations in children with CP. The scale consists of a 
tabulated scoring system, formulated so as to record 17 
observations for each lower limb; the items represent key 
features of pathological gait in patients with CP. The 
observations are made at six different anatomical levels 
(foot, ankle, knee, hip, pelvis and trunk) in the sagittal, 
coronal and transverse planes. For each observation a score 
from 0-2 is assigned based on the level of severity. If the 
observation is normal it is scored as 0, moderate deviations 
are scored as 1 and severe deviations are scored as 2. The 
scores were assigned by an expert clinician after observing 
the videos of the children walking while they were 
undergoing clinical gait analysis. We decided to base our 
analysis on the first seven observations of the scale, as they 

Fig 1.  CoP trajectories for 3 children showing different severity 
levels of toe-walking. The blue circle represents the position of the 
toe marker (II Metatarsal Head) at the end of the stance phase. See 
text for details. 
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FEATURES EXTRACTED FROM CoP AND ANKLE KINEMATICS  

FEATURES DESCRIPTION

1.  AP Displacement Range of displacement of the CoP in the antero-
posterior direction

2.  ML Displacement Range of displacement of the CoP in the medio-
lateral direction

3.  AP/ML ratio Ratio between the AP and ML displacements

4.  Path length/AP Disp. Ratio between the CoP path length and its range in
AP direction

5.  AP mean value Mean value of the CoP in the antero-posterior
direction

6.  ML mean value Mean value of the CoP in the medio-lateral
direction

7.  AP mean (early stance) Mean value of the CoP in antero-posterior
direction in 0%-10% gait cycle

8.  ML mean (early stance) Mean value of the CoP in medio-lateral direction
in 0%-10% gait cycle

9.  AP mean (mid stance) Mean value of the CoP in antero-posterior
direction in 10%-30% gait cycle

10.  ML mean (mid stance) Mean value of the CoP in medio-lateral direction
in 10%-30% gait cycle

11.  AP mean (late stance) Mean value of the CoP in antero-posterior
direction in 30%-50% gait cycle

12.  ML mean (late stance) Mean value of the CoP in medio-lateral direction
in 30%-50%gait cycle

13.  Distance Distance between contact point and foot-off point

14.  Entropy Signal entropy

15.  Max dorsiflexion (stance) Maximum dorsiflexion angle of the ankle during
the stance phase

16. Max dorsiflexion (swing) Maximum dorsiflexion angle of the ankle during
the swing phase

17.  Dorsiflexion at foot contact Dorsiflexion angle of the ankle at instant of foot
contact

18.  Dorsiflexion at foot off Dorsiflexion angle of the ankle at the instant of
foot off

19.  Ankle dorsiflexion range Range of dorsiflexion of the ankle through the
whole gait cycle

20.  Mean rotation Mean value of the foot progression angle through
the stance phase

21.  Max rotation Maximum value of the foot progression angle
through the stance phase
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are focused on deviations of the ankle-foot complex, which 
is of primary interest in toe-walking (see Table 2). 

E. Classification 
We chose a Random Forest (RF) classifier to predict the 

scores of the 7 observations of the Edinburgh Visual Scale 
based on kinematic and CoP data. RF is an ensemble of 
several weak, weakly-correlated decision trees and the 
classification output is obtained by voting between 
individual trees [6]. Classification error was estimated by 
using 10-fold cross validation. 

The two main reasons why we chose RF are 1) their 
ability to handle very large number of input variables even 
for very small datasets and 2) the ensemble technique has 
shown to outperform the base classifier, which in this case 
would be a decision tree. The strength of a RF classifier 
depends on the accuracy of individual trees and the level of 
independence (or correlation) between the trees. As we 
increase the number of trees in a RF, the likelihood of 
dependence between the individual trees increases making 
the forest weaker. Hence it is important to determine the 
proper balance between the number of trees and 
classification error. To achieve this goal, we performed 
classification on the dataset using RF with 5, 10, 50, 100, 

150, 200 and 250 trees. We performed a Wilcoxon signed 
rank test to determine at what point adding more trees to a 
forest did not yield any statistically significant improvement 
in classification accuracy. RF performs feature selection 
during training. This provides useful information about the 
importance of each feature for the classification accuracy. 
We report the top 3 features selected for each observation. 
We used the implementation of RF from the Weka Machine 
Learning toolbox [7]. 

III. RESULTS 
Our first step was to find a number for trees in the RF that 

provided good classification accuracy. Figure 2 shows the 
classification error with respect to the number of trees in the 
RF. We found that at 5% significance level there is no 
improvement in classification accuracy when the number of 
trees is increased from 50 to 100 and beyond. 

Table 3 shows the classification results obtained with a 
RF with 50 trees. We see that observation 1, has a low 
classification error. We can also see that the classifier 
performs best for observations 3, 6 and 7, which are related 
to the amount of ankle dorsiflexion in different phases of the 
gait cycle. In contrast, higher classification errors are found 
for observations (4 and 5) that are meant to capture rotations 
of the foot in the frontal and transverse planes. For all the 
observations, the classification error is smaller than 20%. RF 
provides internal estimates of generalization error [6]. The 
maximum generalization error of 18% was seen for 
observations 2 and 4. The generalization error for 
observation 1 was about 4% higher than the classification 
error in Table 3. 

Fig 2.  Misclassification changes depending on the number of trees in 
the Random Forest classifier. Results are shown for observations 1-7 of 
the Edinburgh Visual Scale. 
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TABLE 2 
OBSERVATIONS 1-7 OF THE EDINBURGH VISUAL SCALE 

OBSERVATION DESCRIPTION

1 Foot contact (heel, flat foot, toe)

2 Heel lift (normal, early, no heel contact)

3 Maximum ankle dorsiflexion in stance

4 Hindfoot varus/valgus

5 Foot rotation (internal/external)

6 Clearance in swing

7 Maximum ankle dorsiflexion in swing

TABLE 3 
RANDOM FOREST CLASSIFICATION WITH 50 TREES 

OBSERVATION CLASSIFICATION OUTCOME (%)

1 87.45 %

2 84.52 %

3 87.44 %

4 84.52 %

5 86.61 %

6 92.05 %

7 91.63 %

TABLE 4 
RANDOM FOREST VARIABLE IMPORTANCE

OBSERVATION FEATURE I FEATURE II FEATURE III

1 1 16 4

2 4 16 14

3 15 17 16

4 20 16 14

5 20 21 14

6 20 21 14

7 16 15 17
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Table 4 shows the top three ranked features for each 
observation. We can see that throughout all seven 
observations the top features picked by the classifier reflect 
aspects that correlate well with the clinical observations. For 
example, we can see that the three most important features 
for observation 3 and 7 are derived from the ankle 
kinematics during stance and swing. Also, feature 16 (Max 
Ankle Dorsiflexion in Swing) is important for observation 1 
and 2, along with feature 4 (Path Length/AP displacement), 
which represents a measure of linearity in the CoP 
trajectory. 

Table 5 shows an average confusion matrix (mean and 
standard deviation) for the first 7 observations of the 
Edinburgh Visual Scale. The misclassified instances are 
mostly concentrated at boundaries between adjacent classes. 
To put it simply, the likelihood of a 0 being classified as a 1 
is higher than it being classified as a 2. This is important 
because the progression of the gait abnormality is gradual, 
so the actual distribution of the features across subjects is a 
continuum whereas the clinical scale is discrete. 

In Figure 3, we can see the results of the classification 
performed with a RF with 50 trees compared to the inter-
rater reliability reported by Read et al. [5] for the Edinburgh 
Visual Scale. The accuracy of the RF classifier is 
comparable to the percentage agreement among raters using 
the observational scale.  

IV. DISCUSSION 
In this paper, we showed that using features extracted 

from CoP trajectories and ankle kinematics, we can build a 

classifier that can predict the severity of toe-walking in 
children with CP with accuracy comparable to the inter-rater 
reliability of the Edinburgh Visual Scale. 

We found that there was no significant increase in 
classification accuracy when using a Random Forest 
classifier with more than 50 trees. The results obtained with 
a Random Forest with 50 trees revealed that across all 
observations the classification error was always smaller than 
20%. Increasing the number of trees beyond 50 would only 
lead to an increase in correlation or dependence between 
individual trees which can lead to increased generalization 
error. 

Our classification accuracy decreased on the observations 
related to the rotation of the foot in the frontal and transverse 
planes. This is not surprising as it is difficult to capture such 
information using features extracted from the CoP. 

We anticipate that the approach we have developed can be 
successfully implemented with existing sensorized shoe 
devices [8]. The output of a sensorized shoe incorporating 
instrumented insoles and bending sensors, combined with 
classifiers of the type we have developed, would allow 
accurate field monitoring of children with CP leading to 
better overall management of their gait impairments.  In the 
future, we hope to expand our analysis on a broader range of 
gait deviations exhibited by children with CP (e.g. crouch 
gait). 
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TABLE 5 
AVERAGE CONFUSION MATRIX 

% Classified as
0 1 2

A
ct

ua
l S

co
re 0 83.8 +/- 11.1 14.4 +/- 9.6 1.8 +/- 4.4

1 14 +/- 18.2 80 +/- 16.2 6 +/- 6.7

2 0 15.3 +/- 9.4 84.7 +/- 9.4

Fig 3.  Comparison between the Inter-rater reliability of the 
Edinburgh Visual Scale and the classification outcome of the 
Random Forest for observation 1-7.
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