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Abstract— The balance between human body composition,
e.g. bones, muscles, and fat, is a major and basic indicator
of personal health. This paper proposes a new discrimination
method for measuring the thickness of subcutaneous fat and
muscular layers based on tissue elasticity. The validity of
the proposed method was evaluated in twenty-one subjects
(twelve women, ten men; aged 20-70 yr) at three anatomical
sites. Experimental results show that the proposed method can
achieve considerably high discrimination performance.

I. INTRODUCTION

The balance between human body composition, e.g. bones,

muscles, and fat, is a major indicator of personal health,

and its quantification is useful for evaluating obesity and

muscular strength in the elderly. The effects of exercise

and diet therapy can be also evaluated as an inspiration to

promote our health in daily living.

Medical images obtained from X-ray computed tomog-

raphy (CT) and magnetic resonance imaging (MRI) clearly

recorded the thickness of subcutaneous fat and muscles in

each part of the human body, and these techniques are useful

for precisely evaluating body composition [1], [2]; however,

these systems are not widely installed, except in medical

institutions. Also, X-ray CT has a serious drawback in that

the subjects are exposed to radiation.

On the other hand, ultrasound imaging devices are com-

pact, safe, and inexpensive, and can observe each part of the

human body in real time [3]. These advantages make the

devices suitable for rapid and precise measurement. Because

of these advantages, we have developed portable ultrasound

imaging devices for evaluating human body composition [4].

This device is intended to be widely used not only in the

medical field but also in healthcare. We have also tried

to develop an automated discrimination function to support

these measurements [5]. This discrimination method utilizes

the statistical characteristics of the tissue image; however, the

discrimination errors varied among individuals, increasing

when the body size did not meet the standard.

This paper proposes a new automated discrimination

method for measuring the thickness of muscular and sub-
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cutaneous fat layers. This method can discriminate tissue

boundaries using a one-dimensional echo signal, so that the

production cost of the device is significantly reduced. To

achieve high discrimination accuracy, the system uses the

characteristics of tissue elasticity, and the discrimination is

conducted using a neural network.

II. AUTOMATED DISCRIMINATION METHOD

BASED ON TISSUE ELASTICITY

A. System Components

An overview of the measurement system is shown in Fig.

1. The system consists of a sensor unit, a main unit, and

a personal computer with control software. Table I shows

the specification of the measurement system. The main unit

and sensor unit are compact, lightweight, and easily portable.

The single element of the ultrasound transducer is attached

to the head of the sensor unit. During measurement, the head

of the sensor unit compresses the surface of the human body,

and transmits ultrasound pulses repeatedly. The thickness of

muscular and subcutaneous fat layers is measured based on

the echo signals reflected at the tissue boundaries. The center

frequency of the ultrasound pulse is 3 MHz, and the pulse

repetition frequency is 3 kHz. The compression force is set

to 10 N by an internal coil spring.

The compression of the coil spring is detected by two

photo interrupters located beside it. Also, these two points

are used as triggers of signal recording. The first and second

triggers are set to 1 N and 10 N, respectively. Echo signals

are temporarily stored in the buffer memory after the signal

was digitized by an A/D converter with a sampling frequency

of 24 MHz, and then transferred to the computer via USB.

Main unit

Personal computer

(Control software)

Sensor unit

Fig. 1. Measurement system
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TABLE I

SPECIFICATION OF THE MEASUREMENT SYSTEM.

US probe frequency 3 MHz
Sampling frequency 24 MHz
Pulse repeated frequency 3 kHz
Diameter of the US element 14 mm
Compression mechanism Coil spring (stroke 10mm)
Scan depth Approx. 100 mm
Contact pressure 10 N
Communication method USB1.1 (12Mbps)
Dimensions (main unit) 50(W) × 130(H) × 170(D) mm
Dimensions (sensor unit) 41(D) × 140(L) mm
Weight Approx. 2.2 kg

Bone

Muscles

Subcutaneous fat

Press

(b) After compression(a) Before compression

Echo signal

Echo signal

Fig. 2. Measurement principle of tissue elasticity

B. Discrimination Method

The measurement principle of tissue elasticity is illustrated

in Fig. 2. The ultrasonic probe compresses the human body

tissues, and measures one-dimensional echo signals repeat-

edly. The tissues are deformed as shown in Fig. 2(a)(b),

and the deformation process is observed using echo signals.

Figure 3 plots an example of the deformation process. In

this figure, (i)(ii) indicate the subcutaneous fat and muscles,

respectively. The horizontal axis is normalized according to

total deformation. As shown in Fig. 3, the subcutaneous

fat deforms rapidly at the beginning of compression, and

then the deformation is saturated. On the other hand, the

muscles deform gradually until the end of compression.

We focused on this difference in tissue elasticity between

subcutaneous fat and muscles, and applied it to the new

automated discrimination method.

The structure of the proposed method is shown in Fig.

4 and consists of the feature extraction process and the

discrimination process. In the feature extraction process,

several candidate peaks are detected from the envelope of

the echo signal using the appropriate threshold, and their

depth is calculated. Then, the shift of the detected peaks is

tracked while compressing the tissue. The strain between the

skin surface and candidate peaks is calculated. Thus, ”Depth”

and ”Strain” information is extracted and used as input data

for the discrimination process. In the discrimination process,

the neural network is used to deal with non-linear and multi-
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Fig. 3. Example of tissue elasticity of subcutaneous fat and muscles

dimensional feature data. Before discrimination, the network

is trained using the training dataset. A detailed explanation

is included in the following section.

1) Feature extraction: Here, the feature extraction for

automated discrimination is explained. The raw echo signal

is rectified and smoothed out using a low-pass filter with a

cut-off frequency of 23 kHz, and N peaks, which have the

intensity over the pre-specified threshold, are extracted from

this envelope signal. In this study, the threshold is determined

by trial and error. The extracted peaks are regarded as candi-

dates of tissue boundaries among subcutaneous fat, muscles,

and bone. Figure 5(a), (b) shows an example of the feature

extraction process; Fig. 5(a) indicates the original echo signal

and Fig. 5(b) indicates its envelope signal after rectification

and smoothing out. Candidates for tissue boundaries are set

at the beginning of compression (m = 0), and each candidate

is defined as Dn,m, (n = 1, 2, · · · , N, m = 1, 2, · · · , M).
Here, n denotes the order of the extracted peak and m
denotes the timing of the strain extraction. Timing m is

normalized on the basis on the total strain of the whole tissue.

During compression, the shift of the extracted candidates

is tracked and the strain Sn,m of each candidate is calculated

as,

Sn,m = (Dn,0 − Dn,m)/Dn,0,

(n = 1, 2, · · · , N, m = 1, 2, · · · , M) (1)

As mentioned above, two kinds of information, the

depth Dn,0(n = 1, 2, · · · , N) and strain Sn,m(n =
1, 2, · · · , N, m = 1, 2, · · · , M), are extracted. The tissue

boundaries among subcutaneous fat, muscles, and bone are

discriminated using this information.

2) Discrimination: The discrimination process is con-

ducted using the neural network. The input data calculated in

feature extraction process is multi-dimensional, and the char-

acteristics of tissue elasticity are nonlinear, as shown in Fig.

3; therefore, the neural network is adopted to deal with them.

The neural network discriminates the type of tissue area with

the candidate peaks. The input of the neural network is a

multi-dimensional vector (Dn,0, Sn,1, Sn,2, · · · , Sn,M ), and

the output indicates the type of tissue area (subcutaneous
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Fig. 4. Structure of the automated discrimination process.
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Fig. 5. Example of peak detection

fat, muscles). The neural network is trained using the training

dataset before discrimination.

III. EXPERIMENTS

Experiments were conducted to evaluate the accuracy of

the proposed method. Twenty-one subjects (twelve women,

ten men; aged 20-70 yr) participated in these experiments,

and three anatomical sites (anterior upper arm, posterior

upper arm and anterior thigh) were measured. These mea-

surement sites are often used to measure the thickness of

subcutaneous fat and muscular layers. The subject does not

have to remove his/her clothes during the measurement. The

parameter in the feature extraction was set as M = 10, and

204 samples (21 subject × 3 sites × N candidates) were
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Fig. 6. Depth distribution of subcutaneous fat and muscle.

extracted. Then, 141 samples were used for the learning of

the neural network, and 63 samples were used for discrim-

ination. Figure 6 presents the frequency distribution of 63
discrimination samples according to their boundary depth.

Experienced observers examined them and discriminated the

boundaries. As seen in this graph, the two groups overlapped

and it was difficult to discriminate them using only depth

information.

In this paper, statistical analysis software (STATISTICA,

StatSoft, Inc.) was used to calculate the neural network.

Three neural network models, a linear model, MLP and RBF,

were compared. The linear model consisted of input and

output layers, and the pattern space was divided using a linear

function. On the other hand, the MLP consisted of the input

layer, hidden layer and output layer. The sigmoid function

was used as the transfer function. The RBF also consisted

of the input layer, hidden layer and output layer. Gaussian

function was used as the basis function. The number of units

in the hidden layer of MLP and RBF was determined as 18
and 11 respectively by trial and error. MLP and RBF can

construct a nonlinear model through learning.
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Fig. 7. Discrimination example.

A. Discrimination Example

An example of the discrimination result is shown in Fig.

7. The neural network model is MLP. Figure 7(a) shows

the envelope of the measurement echo signal. Six candidate

peaks were chosen using the pre-specified threshold. As

shown in this figure, the depth information obtained based

on the intensity is not sufficient to discriminate the type of

tissue. On the other hand, Fig. 7(b) shows strain information

for each candidate peak during compression. The strain char-

acteristics are different between each candidate peak. The

discrimination results by the neural network are also shown

in the graph. The proposed method accurately discriminated

the type of tissue based on tissue elasticity.

B. Evaluation of Accuracy

To verify the effect of the proposed discrimination method,

comparison experiments were conducted under three con-

ditions. The conditions used only depth information, depth

information and strain information(m=5), and the proposed

method. Also, three neural network models were investi-

gated, and discrimination accuracy is shown in Table 2.

In this table, discrimination accuracy was improved using

strain information. Also, MLP and RBF, which are nonlinear

models, seem to be more effective than the linear model.

Finally, the depth of tissue boundaries was calculated

using the discrimination result by the proposed method.

The difference from the manual discrimination result by

an experienced observer is evaluated in Table 3. Here,

manual discrimination was conducted using not only one-

dimensional echo signals but also ultrasound images. The

TABLE II

DISCRIMINATION ACCURACY [%].

Depth Depth and Depth and
only Strain(m=5) Strain(m=1,· · ·,10)

Linear 88.9 90.7 94.4

RBF - 92.6 95.3

MLP - 92.6 94.4

TABLE III

DISCRIMINATION ERROR [mm].

Anterior Posterior Anterior
Subjects upper arm upper arm thigh

1 2 1 2 1 2

A 0.0 0.0 8.3 3.9 2.0 0.2

B 0.0 0.0 4.9 4.9 0.0 0.0

C 0.2 0.2 0.4 0.4 0.3 0.3

D 2.6 0.2 0.5 0.5 0.5 0.5

E 7.2 0.3 0.3 0.3 0.5 0.5

1:Using Depth information
2:Using Depth and Strain information(m=1,· · ·,10)

proposed method was compared with the situation using

only depth information. The highlighted cells in the table

indicate improved precision using strain information. We can

confirm that the depths of tissue boundaries can be calculated

precisely using the proposed method. In particular, cases with

a large error have considerably improved accuracy.

IV. CONCLUSIONS

In this paper, a new automated discrimination method was

proposed to measure the thickness of subcutaneous fat and

muscular layers. The proposed method discriminates the tis-

sue boundary based on the characteristic of tissue elasticity.

In the experiments, the performance of the proposed method

was confirmed.

In future research we would like to improve the feature

extraction process and the neural network model to expand

the discrimination ability to other applications.
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