

Abstract — Over the last decade, there has been substantial

research interest in the application of accelerometry data for

many forms of automated gait and activity analysis algorithms.

This paper introduces a summary of new “of-the-shelf” mobile

phone handset platforms containing embedded accelerometers

which support the development of custom software to implement

real time analysis of the accelerometer data. An overview of the

main software programming environments which support the

development of such software, including Java ME based JSR

256 API, C++ based Motion Sensor API and the Python based

“aXYZ” module, is provided. Finally, a sample application is

introduced and its performance evaluated in order to illustrate

how a standard mobile phone can be used to detect gait activity

using such a non-intrusive and easily accepted sensing platform.

I. INTRODUCTION

HE study of human movement has been an active area

of research over many years with one of the main aims

being the identification of different variables that could be

used to identify and characterise gait patterns. Other research

has focused on the effect that aging has on walking parameters

such as swing length and swing speed. Various studies have

suggested the use of accelerometer based hardware to measure

the acceleration due to the motion of the body. Most modern

accelerometers are tri-axial in nature which means that the

forces being measured can often, with careful physical

placement of the accelerometer based sensing platform,

represent physiologically relevant components e.g.

anteroposterior, vertical and lateral. This type of force

measurement methodology forms the basis of many proposals

for monitoring human gait and activity in general. These

applications include automated fall detection systems targeted

at elderly populations[1] and energy expenditure estimation

algorithms to support monitoring of adherence to prescribed

exercise regimes[2] in the case of various disorders such as

diabetes, cardio-vascular diseases etc. All of the systems that

have been proposed to date have relied on the user wearing or

carrying some external accelerometer based hardware

platform in order to measure the forces that are exerted [3]. In

many cases, such platforms also contained some form of

wireless communication functionality to allow the system to

download recorded or processed data to a remote server

application. However, a common issue that has arisen in many

trials using such systems is that the subjects in the studies have

found that this external apparatus is quite uncomfortable and

cumbersome to wear [4]. However, a recent trend in the area

of consumer electronics involves the deployment of

accelerometers embedded within certain classes of devices.

For example, in the area of gaming, the Nintendo Wii

controller uses accelerometers as a primary functionality to

measure the physical actions of the player. Other devices, such

as laptop computers, have used accelerometer devices to

detect when the device has been dropped in order to

implement actions which will protect sensitive subsystems

(e.g. hard disk drive) within the device. Most interestingly, a

very recent trend has seen the deployment of accelerometers

within “off-the-shelf” cellular/mobile phone handset. In many

of these handsets, the accelerometer functionality is not well

known or utilised but because of the ubiquitous nature of the

cellular handset in modern life, such a platform could provide

an ideal and unobtrusive platform for deploying certain real

time gait analysis and physical activity estimation applications

based on accelerometry. This paper seeks to introduce the

background to these new “software-only” based acceleromter

environments which require absolutely no additional

hardware customisation. In addition, because of the nature of

the device, there is the added benefit of a built in data

communication functionality to support real time

downloading of raw or processed acceleromter data. Section 2

of this paper will review the area of accelerometer based gait

and activity analysis . Section 3 of this paper will provides an

overview of the mobile phone based acceleometer

functionality and the software development environments

available for developers wishing to implement applications

which utilise the acceleromter sensor data in real time. Section

4 of this papers describes a basic sample application which has

been implemented and evaluated using this mobile handset

based platform. Section 5 summarises the main conclusions

which have been drawn from this work and outlines further

research which is currently being undertaken in this area.

Martin Hynes
1
, Han Wang

1
 and Liam Kilmartin

1 2
, Member, IEEE

1
Communication and Signal Processing Research Unit,

School of Engineering and Informatics,
2
 National Centre for Biomedical Engineering Science,

National University of Ireland, Galway

mhynes@nuigalway.ie

Off-the-Shelf Mobile Handset Environments for Deploying

Accelerometer based Gait and Activity Analysis Algorithms

T

5187

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

II. RELATED RESEARCH

 In this section of the paper, a review is provided of some of

the application spaces in which gait\activity analysis has been

applied in recently reported research. The main applications

to which gait analysis algorithms have been deployed include:

Biometric applications, Activity monitoring, Fall detection

and Rehabilitation

The use of gait analysis has been proposed as a less

intrusive method for implementing biometric authentications

compared with other techniques such as voice, fingerprint or

iris analysis. For example, in [5] it was shown how a combined

acceleration signal could be used for a gait based biometric

authentication procedure. This analysis was based on

determining a statistical model relating to subject dependent

gait parameters which was recorded in a database. During an

authentication procedure, the equivalent parameter statistics

were calculated and compared to the previously stored

reference template. A basic similarity metric was used to

determine whether to accept or reject the “walker” as the

claimed identity.

Another area of significant recent research interest is the

automated monitoring of daily activity using accelerometer

platforms. In some cases, such research has also focused on

the estimation of the surface slope when walking activity is

taking place. Much of this research is based on the extraction

of spectral features (e.g. Wavelet Packet Decomposition

(WPD) [6] or Discrete Cosine Transform (DCT) [8]) from the

accelerometer data and the use of various classification

algorithms, including neural networks, Support Vector

Machines etc. Another WPD based method was outlined in [7]

which was implemented using a mobile phone handset using a

custom accelerometer platform connected to the phone via an

external port. The accelerometer data was then sent to a

remote server where a gait pattern classification algorithm

based on a WPD analysis followed by a Bayesian Classifier

was implemented. This algorithm was shown to be 80%

successful in pattern classification. Another alternative

method outlined in [8] using custom accelerometer hardware

used a DCT feature extraction stage followed by a Gaussian

Mixture Model (GMM) to classify the walking patterns. This

method was shown to be 86% successful in subject dependent

gait pattern classification.

A final noteworthy area of significant research relates to

monitoring the activity of elderly populations, particularly

those suffering from degenerative disorders which affect gait

such as Parkinson's Disease (PD). The impact of PD on gait

patterns was reported as being clearly identifiable using

accelerometer data in [3]. Also, by using an FFT analysis on

accelerometer data, the “freezing effect” on the gait pattern

due to PD was reported as identifiable in [9]. Such

classifications can be very useful for clinicians when it comes

to measuring the progression of the disease. Fall detection is

another area in which the use of accelerometer platforms has

become commonplace. Kangas et al. [10] applied a simple

threshold technique to accelerometer data and when applied in

combination with some posture techniques it leads to a 100%

detection of falls from a recorded database.

III. MOBILE PHONE ACCELEROMETER SUPPORT

Accelerometers are increasingly being incorporated into

the hardware of many modern cellular/mobile phone handsets.

A non-exhaustive list of currently available mobile handsets

which contain embedded accelerometer devices includes:

Sony Ericsson W760i. Nokia 5500, N95 and N97,Samsung

Omni, Blackberry Storm, Apple iPhone and Google G1. Since

each of the mobile phone manufacturers may utilise different

embedded accelerometer devices, it is essential that a

standardised and portable development environment exists for

software developers wishing to deploy applications on the

handsets that utilise such accelerometer hardware. A mobile

sensor Application Programming Interface (API) facilitates

the development of applications which require access to data

from any embedded sensors on the mobile handset (e.g.

accelerometers). The two main development environments

which allow mobile handset applications to interface with the

mobile handset’s sensors use either the Java based JSR 256

API or alternatively the Symbian Sensor API. Some of the

handsets, most notably the Apple iPhone, use proprietary

software APIs which are in no way cross-platform portable

and hence these will not be discussed in any more detail.

A. JSR 256 API

The Java based JSR 256 API [11] is a generic API which

can be used on any type of device supporting Java Micro

Edition (Java ME). In terms of mobile handsets, this API is

currently supported by both Samsung and Sony Ericsson

mobile handsets with certain upcoming handsets from Nokia

also likely to support the API. The JSR 256 API provides a

generic architecture to allow J2ME developers to interact with

the mobile devices’ sensors. The JSR 256 API provides

interfaces that the sensor’s manufacturers can implement

which will then allow a developer to design a single Java ME

application which is compatible with any JSR 256 compliant

handset. The JSR 256 Mobile Sensor API (using the

javax.microedition.sensor package) allows Java ME

application developers to access sensor data easily and

uniformly. The class structure of the JSR 256 API is defined in

the JSR specification[11]. It can be seen in the

javax.microedition.sensor class structure that the only class

actually implemented is the Sensor Manager which returns a

list of all available sensors. All of the interface definitions in

this specification are indicative of methods which must be

implemented by the mobile handset manufacturer in order to

allow third party Java ME developers to access their sensors in

the standardised manner.

In the case of handsets that include tri-axial accelerometers

(some handsets currently only support dual axis

accelerometers), each of the three data channels are managed

using two different interfaces, namely: ChannelInfo and

Channel. The ChannelInfo interface defines the properties of

5188

the data, for example, the accuracy of the measurement or the

units of the measurement. The Channel interface maintains

condition objects attached to each channel of the sensor, for

example the valid range of accelerometer signal values, with

these conditions being used to trigger an application to read

new accelerometer data.

B. Mobile Sensor API

The Mobile Sensor API is an alternative programming

interface available to application developers wishing to access

the accelerometer functionality and it is most commonly used

in Nokia mobile devices which are based on the Symbian

operating system. The Sensor plug-in, which is available in the

S60 Software Development Kit (SDK) [12], is used to access

data from the embedded sensors on such devices. However

there are several complications associated with the use of the

Mobile Sensor API with Nokia Mobile Devices. For example,

in the case of early versions of the N95 (firmware earlier than

20.0.015), the developer can only access one sensor and it is

only possible to access the 4 values of tilt for that sensor. A

possible solution to this problem involves the use of the N95

RD Accelerometer plug-in. More recent versions of the N95

handset, allows the developer to use the sensor API to access

data for all 3 axis with no limitations on the number of samples

which can be read. The S60 SDK (3rd edition) saw the

introduction of the new Sensor Framework which supports a

new set of APIs offering more versatility and extendibility as

well as new possibilities relating to sensor data formats and

usage scenarios. It must be stated that use of this API requires

the application to be developed in Symbian C++ which has a

slightly different structure to ANSI C++ and it is widely

accepted as being a very challenging development

environment even for expert software developers.

 An alternate development option exists for less

accomplished developers who do not wish to develop an

application using C++. Python for the S60 SDK brings the

power and productivity of the Python programming language

to the S60 platform. These tools enable rapid application

development and prototyping, and the ability to create

stand-alone S60 applications written in Python. The "aXYZ"

module is a sensor extension for Python which gives

developers access to the N95 accelerometer. However, the

primary disadvantage of this approach is that a developer must

first install the Python Platform along with the Nokia RD

Accelerometer Plug-in before installing the “aXYZ” module.

In summary, the Mobile Sensor API has some major

disadvantages namely:

• The mobile device must be Symbian based.

• In order to develop applications in either C++/Python

the developer must install additional plug-ins.

Therefore the J2ME based JSR 256 API provides a more

“platform independent” portable solution which is also more

developer friendly. Indeed, Nokia handsets will support the

JSR 256 API in future S60 SDK (5th Edition) based mobile

phones, such as the N97 model.

IV. SAMPLE ALGORITHM IMPLEMENTATION

 A basic Java ME gait analysis application was developed

using the JSR 256 API for execution on a Sony Ericsson

W580i handset in order to both investigate and illustrate the

ease of implementation and to investigate the performance of

the overall application. The algorithm, which implements a

simple gait activity detection algorithm, is shown in figure 1.

The application executing on the handset processes the three

accelerometer channels at a sample rate of 20Hz without any

significant impact on the overall performance of other

software on the handset. In addition to implementing the

algorithm, the sample application also automatically

downloads the results of the gait analysis in real time (along

with GPS data on the subject’s location) over a GPRS/3G

connection to a remote database enabled server.

Figure 1: Algorithm Design

Firstly for each accelerometer channel a frame of 60

samples (3 seconds) of accelerometer data is collected and

passed through a fifth order FIR filter with a cut-off frequency

of 0.5 radians/sec. An Average Magnitude Difference

Function (AMDF), as given by equation (1), is calculated for

the resultant frames of filtered data in order to facilitate

detection of gait activity through identification of the presence

of a strong periodicity on one or more of the channels

∑
−

=

+−=
1

0
)()(

1
)(

N

n
knsns

N
kD (1)

where:

N: Frame size in samples

S(n): Filtered Accelerometer Data

D(k): AMDF value for a delay of k samples

5189

Figures 2 and 3 show examples of the raw accelerometer

data stream and an example AMDF for both walking and

non-walking activities.

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Accelerometer Magnitude (X-Axis)

Sample Number

N
o
rm

a
liz
e
d
 A
c
c
e
le
ra
ti
o
n
 M

a
g
n
it
u
d
e

Walking

Resting

Figure 2: Accelerometer Data

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
g
n
it
u
d
e

Lag (Number of Sample)

AMDF Output

Walking

Resting

Figure 3: AMDF Output

The graphs clearly illustrate the expected periodicity of the

walking trace while the resting trace displays no obvious

periodicity. The last block in the overall algorithms design

was to implement a basic two-state state machine

(implementing a “walking” and “non-walking” state). In order

to make the algorithm more robust, transitions from one state

to the other are not based on the result of analysing a single

frame and detecting periodicity on any of the channels. Instead

transitions only occur when four out of the “last” five frames

indicate that a transition in state should take place.

Performance evaluation tests were carried out with subjects

carrying the phone handset in a “normal” fashion (e.g. in a

jacket pocket). Each of five healthy subjects were asked to

carry a handset supporting the application during parts of their

normal daily activities. Such activities would typically consist

of both walking and non-walking periods. The subjects were

accompanied during these tests to allow the output of the

classification algorithms to be compared with actual activity

being undertaken. Table 1 summarises the results of these tests

in the form of a confusion matrix and illustrate a surprisingly

good performance given the relative simplicity of the

algorithm and the lack of any restrictions in terms of where the

mobile handset was stored during activities.

 Walking Resting

Walking 89.2% 10.8%

Resting 1.18% 98.82%

Table 1: Confusion Matrix for Algorithm’s Recognition Rate

V. CONCLUSIONS

This paper has focused on providing an overview of how

“off-the-shelf” mobile handsets equipped with embedded

accelerometers could potentially provide a convenient and

natural device for implementing certain automated gait and

activity monitoring for “out of the laboratory” deployments. A

summary and brief critique of the most commonly used

programming techniques to allow custom accelerometry

based applications to be developed for such handsets was

provided. The structure and performance of a sample gait

activity detection application which was deployed on one such

handset was summarised. It is clear that this type of platform

could potentially provide a very convenient and easily

accepted platform as a means of implementing many forms of

automated gait and activity analysis. However, there are some

issues which require further research. These include issues

relating to the placement and likely unpredictable movement

of handsets during “normal” activity, particularly when the

application requires knowledge of the accelerometer

orientation. Other issues relate to the impact which “normal

phone activity” (e.g. making calls, texting etc.) would have on

overall algorithm performance. The latter issues can be

addressed to some degree as it would be possible to “suspend”

any accelerometer data analysis when such events are detected

by the application but studies need to be completed with this

form of platform to determine whether such action need

actually take place or perhaps whether the underlying gait or

activity would still be detectable in the presence of much more

complex “noise” in the accelerometer data.

REFERENCES

[1] T. Yoshida, F. Mizuno, T. Hayasaka, K. Tsubota, S. Wada, and

T. Yamaguchi, “Gait analysis for detecting a leg accident with an

accelerometer,” 1st Transdisciplinary Conference on Distributed Diagnosis

and Home Healthcare, 2006.

[2] R. Kauw-A-Tjoe, J. Thalen, M. Marin-Perianu, and P. J. M. Havinga,

“Sensorshoe: Mobile gait analysis for parkinson's disease patients,” in

UbiComp 2007 Workshop Proceedings, Innsbruck, Austria, 2007.

[3] Jong Hee Han, Hyo Sun Jeon and K. S. Park, “Gait detection from three

dimensional acceleration signals of ankles for the patients with parkinson's

disease,” in International Conference on Technology and Applications in

Biomedicine, 2008. ITAB 2008., May 2006, pp. 349–352.

[4] J. A. DeLisa and K. Casey, Gait analysis in the science of rehabilitation.

DIANE Publishing, 1998.

[5] D. Gafurov, K. Helkala, and T. Søndrol, “Biometric gait authentication

using accelerometer sensor,” JCP, vol. 1, no. 7, pp. 51–59, 2006.

[6] N. Lovell, N. Wang, E. Ambikairajah, and B. Celler, “Accelerometry

based classification of walking patterns using time-frequency analysis,” in

29th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, 2007. EMBS 2007., Aug. 2007, pp. 4899–4902.

[7] T. Iso and K. Yamazaki, “Gait analyzer based on a cell phone with a

single three-axis accelerometer,” in MobileHCI '06: Proceedings of the 8th

conference on Human-computer interaction with mobile devices and

services. New York, NY, USA: ACM, 2006, pp. 141–144.

[8] R. K. Ibrahim, E. Ambikairajah, B. Celler, N. H. Lovell, and

L. Kilmartin, “Gait patterns classification using spectral features,” in IET

Irish Signals and Systems Conference, 2008, June 2008, pp. 98–102.

[9] J. H. Han, W. J. Lee, T. B. Ahn, B. S. Jeon, and K. S. Park, “Gait analysis

for freezing detection in patients with movement disorder using three

dimensional acceleration system,” in Proceedings of the 25th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, 2003., vol. 2, Sept. 2003, pp. 1863–1865 Vol.2.

[10] M. Kangas, A. Konttila, I. Winblad, and T. Jamsa, “Determination of

simple thresholds for accelerometry-based parameters for fall detection,” in

29th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, 2007. EMBS 2007., Aug. 2007, pp. 1367–1370.

[11] JSR 256: Mobile Sensor API, “http://jcp.org/en/jsr/ec.”

[12] Symbian S60 SDK, “www.symbian.com.”

5190

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

