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Abstract— The brain is a complex biological system with
dynamic interactions between its sub-systems. One particular
challenge in the study of this complex system is the identification
of dynamic functional networks underlying observed neural
activity. Current imaging approaches index local neural activity
very well, but there is an increasing need for methods that
quantify the interaction between regional activations. In this
paper, we focus on inferring the functional connectivity of
the brain based on electroencephalography (EEG) data. The
interactions between the different neuronal populations are
quantified through a recently proposed dynamic measure of
phase synchrony. Small world measures, which include cluster-
ing coefficient, path length, global efficiency, and local efficiency,
are computed on graphs obtained through the phase synchrony
measure to study the underlying functional networks. The
proposed measures are applied to an EEG study containing
the error-related negativity (ERN), a brain potential response
that indexes endogenous action monitoring, to determine the
organization of the brain during a decision making task and
determine the differences between Error and Correct responses.

I. INTRODUCTION

The brain follows two organizational principles referred to

as functional segregation and functional integration, enabling

the rapid extraction of information and the generation of co-

herent brain states [1]. Any mechanism for neural integration

must involve interactions between the functionally relevant

local networks. To examine functional integration in the

temporal frame, there is a need to characterize the temporal

dynamics of neural networks with millisecond accuracy.

Neurophysiological measures with high temporal resolution,

such as the electroencephalogram (EEG), are the most appro-

priate tools for examining the dynamic interactions of neural

networks.

Types of indices used for quantifying functional con-

nectivity include linear measures, such as correlation and

coherence, and nonlinear measures, such as phase synchrony

and generalized synchronization measures [2]. Phase syn-

chrony is a particularly attractive measure for quantifying the

connectivity since it is believed that networks of reciprocal

interactions are key to integration. In recent work [3], we

have proposed a new time-varying measure of phase syn-

chrony that quantifies the dynamic nature of the interactions
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between neuronal oscillations with a high time-frequency

resolution.

Although phase synchrony measures are effective at quan-

tifying the pairwise interactions between neuronal popula-

tions, they do not reveal much information about the overall

organization of the brain. Previous MRI [4], MEG [5], and

EEG [6] studies have applied graph theoretical measures on

neurophysiological data for understanding the organization

of the brain. In particular, small world network topology has

been used to understand the functioning of neural networks.

The main motivation behind using small world theory is that

high clustering coefficients and short path lengths observed

in small world networks are analogous to the principles of

functional segregation and integration in the brain.

The study presented here utilized data from an elec-

troencephalography experiment, which consisted of error-

related negativity (ERN), to determine the organization of the

brain during a decision making task and identify differences

between Error and Correct responses.

II. NEURAL SYNCHRONIZATION AND FUNCTIONAL

INTEGRATION MEASURES

A. Time-Frequency Phase Synchrony

In recent work, we have introduced a new time-varying

measure of phase synchrony based on a complex-valued

time-frequency distribution introduced by Rihaczek [7]. For

a signal, x(t), Rihaczek distribution is expressed as

C(t,ω) =
1√
2π

x(t)X∗(ω)e− jωt (1)

and measures the complex energy of a signal at time t and

frequency ω .

One of the disadvantages of Rihaczek distribution is the

existence of cross-terms for multicomponent signals. In order

to get rid of these cross-terms, we introduced a reduced

interference version of Rihaczek distribution by applying a

kernel function such as the Choi-Williams (CW) kernel [8]

with φ(θ ,τ) = exp(−(θτ)2

σ ) to filter the cross-terms to obtain

C(t,ω) =
∫∫

e

(

−(θτ)2

σ

)

e( j θτ
2 )A(θ ,τ)e− j(θ t+τω)dτdθ (2)

where A(θ ,τ) =
∫

s(u + τ
2
)s∗(u− τ

2
)e jθudu is the ambigu-

ity function of the signal and exp( jθτ/2) is the kernel

corresponding to the Rihaczek distribution [7]. This new

distribution satisfies the marginals and preserves the energy,

and is a complex energy distribution at the same time. The
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value of σ can be adjusted to achieve a desired trade-off

between resolution and the amount of cross-terms retained.

We can compute the phase difference between two signals

based on this complex distribution as

Φ12(t,ω) = arg

[

C1(t,ω)C∗
2(t,ω)

|C1(t,ω)||C2(t,ω)|

]

(3)

and can define a synchrony measure based on quantifying

the intertrial variability of the phase differences, named the

phase locking value (PLV)

PLV (t,ω) =
1

N

∣

∣

∣

∣

∣

N

∑
k=1

exp( jΦk
12(t,ω))

∣

∣

∣

∣

∣

(4)

where N is the number of trials and Φk
12(t,ω) is the time-

varying phase estimate between two electrodes for the kth

trial. If the phase difference varies little across the trials,

PLV is close to 1.

B. Graph Theoretic Measures

A graph G is defined by (VG,EG,ℜG) where VG is a set of

vertices, EG is a set of edges, and ℜG is an incident function

that associates with each edge a pair of vertices. The graphs

in this study are simple and undirected binary graphs.

After G is obtained, a distance matrix, D, is required for

calculating various graph measures. D contains the number

of edges required to link each pair of vertices in the graph.

If a path does not exist between two vertices, the distance is

assigned as 0. The distance matrix is acquired by generating

Gr for 1 ≤ r ≤ N − 1. Di j = r if the first non-zero integer

appears in Gr
i j. Once G and D are obtained, one can compute

the major parameters to identify the global organization of

the network such as average degree, KG, clustering coef-

ficient, CG, path length, LG, global efficiency, E
global
G , and

local efficiency, E local
G .

The clustering coefficient quantifies the level of functional

integration in the network. Ci represents the ratio of the

existing connections between neighbors of vi and all possible

connections. It is calculated by identifying all neighbors of

vi, mi, followed by identifying how many edges, |EGi
|, are

shared among the neighbors. The maximum possible pairs

of neighbors sharing edges is calculated as |Emax
Gi

| =
(|mi|

2

)

.

The clustering coefficient of a particular node is

Ci =
|EGi

|
|Emax

Gi
| (5)

and the clustering coefficient for the graph, CG, is the average

of Ci over all nodes.

The characteristic path length of the brain quantifies its

functional segregation. Li of vi is calculated by the average

distance required to reach each of the other vertices in the

graph and is equal to

Li =
1

ni

N

∑
j=1

Di, j (6)

where ni is the number of non-zero distances between vi and

v j. The characteristic path length for the entire graph, LG, is

the average of all Li.

Global and local efficiencies give indication on how effi-

cient information is transmitted throughout the network [9].

Typically, C and L can be used to estimate the local and

global efficiencies respectively. A graph’s global efficiency is

inversely related to the shortest distance available to transmit

the information from vi to v j. From [10], the global efficiency

is

Eglobal =
1

N2 −N
∑

i 6= j∈G

1

Di, j

. (7)

The local efficiency is similar to global efficiency defined

for each node and can be understood as a measure of the fault

tolerance of the network, indicating how well each subgraph,

Gi, exchanges information when vi is removed from G. The

local efficiency is given by

E local
i =

1

NGi
2 −NGi

∑
j 6=k∈Gi

1

D j,k
. (8)

An overall local efficiency for the graph was calculated by

averaging all E local
i .

In order to evaluate the small world behavior of G, its

parameters need to be compared to random graphs. The

random graphs used for this study were generated using

an algorithm [11] where connections between vertices were

assigned with uniform probability of P(Grand
i, j = 1) = Q

N2−N
where Q is the number of edges in G. Similarly, lattice

graphs were generated by assigning k connections to adjacent

vertices where 1 ≤ k ≤ N −1. G is characterized as a small

world network if γ = CG
Crand

≫ 1 and λ = LG
Lrand

≈ 1 [12]. A

measure of small worldness is identified as σ = γ
λ

where

σ ≫ 1 reveals the existence of a small world topology within

the graph.

III. DATA

A. Error Related Negativity

The phase synchrony measure was applied to a set of

EEG data containing the error-related negativity (ERN). The

ERN is a brain potential response that occurs following

performance errors in a speeded reaction time task. The

ERN has been characterized as a neurophysiological index

of endogenous action monitoring-the automatic capacity

to monitor behavioral performance on-line and to initiate

corrective action as needed, either through detection of

errors [13] or detection of conflict among competing neural

response pathways [14]. Our previous work indicates that

there is increased phase synchrony associated with ERN for

the theta frequency band for Error responses compared to

Correct responses [3].

B. Test Subjects

EEG data from 63-channels was collected from 84 un-

dergraduate students (34 male) from the University of Min-

nesota. Recordings were done in accordance with the 10/20
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Fig. 1: a) Plot of mean clustering coefficients, C, derived from correct (star) and error (circle) groups. b) Plot of mean path

lengths, L, derived from correct (star) and error (circle) groups. L and C for lattice (solid line) and random (dashed line)

graphs are plotted for comparison. Data is plotted with respect to average degree, K.

system on a Neuroscan Synamps2 system (Neuroscan, Inc.).

A speeded-response flanker task was employed, and error and

correct response-locked averages were computed for each

subject.

C. Baseline Correction

Phase synchrony measures represent the actual phase dif-

ference between two signals for a defined time and frequency.

In order to more accurately measure transient changes in

phase-synchrony (instead of constant synchrony), we base-

line corrected the time-frequency phase-synchrony values.

We chose a baseline before the initial stimulus was delivered

(-990 to -900 ms). Baseline correction is applied by subtract-

ing the average phase synchrony at each frequency for the

pre-stimulus time range post-stimulus phase synchrony as

follows:

PLVc(t,ω) = PLV (t,ω)− 1

|Length of pre-stimulus| ∑
t∈pr.s.

PLV (t,ω).

(9)

IV. RESULTS

A. Connectivity Matrix

Eighty-four 63x63 connectivity matrices containing the

baseline corrected average phase synchrony values in the

theta frequency band (4-7 Hz) and ERN time window (25-75

ms) for each electrode pair from the 10/20 arrangement were

generated for Error and Correct responses.

B. Adjacency Matrix

The phase synchrony matrices were converted into undi-

rected binary graphs, G, by applying a threshold, T . Through

this method, pairs of electrodes with phase synchrony values

greater or equal to the threshold were designated a 1 and

those below the threshold a 0. A range of T were applied

to the graphs in intervals of 0.001 for α ≤ T ≤ β where

α and β are the minimum and maximum phase synchrony

values within the entire set of subject groups, respectively.

The four specified graph measures were then implemented

and computed with respect to average degree, KG.

C. Clustering Coefficient and Path Length

From Fig. 1a, it can be seen that as KG increases, Cerror

and Ccorrect remain greater than Crand , i.e. the human brain

is more clustered compared to a random network. Fom Fig.

1b it is seen that Lerror and Lcorrect are approximately equal

to Lrand . Comparing the two subject groups to each other

using a one tailed t-test, Ccorrect > Cerror (p < 10−12) for

4 ≤ K ≤ 35 indicating a decrease in functional integration

during Error responses. Also, a significant difference be-

tween the two subject groups occurs for 9 ≤ K ≤ 35 where

Lerror < Lcorrect(p < 10−5). This is indicative of a decrease

in functional segregation during Error responses.

D. Global Efficiency and Local Efficiency

From Fig. 2a and 2b, it can be seen that local and global

efficiency show a significant difference between the two sub-

ject groups for 4 ≤ K ≤ 35. A t-test revealed E local
correct > E local

error

(p < 10−12). This indicates that the efficient transmission

of information among locally clustered nodes degenerates

for error responses compared to correct responses. Local

efficiency was expected to give indications of significant

changes between the two subject groups just as clustering

coefficient had since clustering coefficient can be regarded

as the local efficiency of information transmission within

the neighborhood of each individual vertex, e.g. [9] uses

clustering coefficient as a close approximation for local

efficiency.

A one tailed t-test on the global efficiency revealed

E
global
correct < E

global
error (p < 10−4) for 4 ≤ K ≤ 14. For 15 ≤

K ≤ 35, E
global
error < E

global
correct (p < 0.01). This indicates that

the efficient transmission of information globally degenerates

during Correct responses when the graphs are very sparse. By

observing the behavior of path length as compared to global

efficiency, path length can be used as a close approximation

for global efficiency through an inverse relationship.

E. Small World Measures

The first observation from Fig. 3c is that σcorrect >> 1 and

σerror >>1 indicating the brain performs as a small world

network. Secondly, the figure shows that the small world
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Fig. 2: a) Plot of correct (solid line) and error (dashed line) global efficiencies with respect to average degree, K. b) Plot of

correct (solid line) and error (dashed line) local efficiencies with respect to average degree, K.

topology of the brain decreased during Error responses for

4 ≤ K ≤ 20. A one tailed t-test revealed σerror < σcorrect

(p < 10−4). It is also observed that clustering coefficient

has a stronger influence on the decrease in small world

topology compared to the path length. This indicates that the

brain is organized more like a small network for the Correct

responses compared to the Error responses where functional

integration diminished.

4 6 8 10 12 14 16 18 20
0.9

1

1.1

1.2

K

λ

 

 

Correct
Error

(a)

4 6 8 10 12 14 16 18 20

2

4

6

8

K

γ

 

 

Correct
Error

(b)

4 6 8 10 12 14 16 18 20

2

4

6

8

K

� σ

 

 

Correct
Error

(c)

Fig. 3: a) Plot of λ with respect to average degree, K. b)

Plot of γ with respect to average degree, K. c) Plot of small

world measure, σ , with respect to average degree, K. Correct

plotted with solid line/Error plotted with dashed line.

V. CONCLUSION

In this paper, we applied global graph theoretic measures

to study the small world topology of the brain associated

with ERN. The results of this study, in concordance with

previous studies, shows that the brain follows a small world

topology when processing visual stimulus. We have also

observed significant decreases in local efficiency and cluster-

ing during Error responses compared to Correct responses,

indicating loss of the optimal organization normally expected

in the brain. Future work will focus on identifying the local

networks of the brain by determining hubs and functional

modules within the network.
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