
  

  

Abstract— This paper presents a numerical approach using 
principal component analysis (PCA) to quantize and 
characterize the variance of hand postures in a novel posture 
transformation task. Five subjects were tested in two tasks in 
which a cursor can be moved by varying the hand posture. This 
was accomplished by weighted linear combination of 14 sensors 
of a data glove. The first task was to move a cursor on 
computer screen in one dimension horizontally, by posing 
various hand postures. To increase the complexity of control, in 
the second task, subjects were asked to move a cursor on 
computer screen in two dimensions. Joint angles were 
measured during the experiment by the data glove. In both 
tasks subjects participated in multiple trials until they achieved 
smooth cursor movement trajectories. PCA was performed 
over the postures obtained during the multiple trials of the two 
tasks. Across the trials, in both the tasks a gradual decrease in 
the number of principal components was observed. This implies 
that the variance in the postures decreases with learning. 
Additionally this might indicate that through learning, subjects 
adapted postural synergies (or eigen postures) in this novel 
geometrical environment. Postural synergies when visualized 
revealed task specific synergies. 

I. INTRODUCTION 
YNERGIES can be defined as common or shared 
patterns which combine in time and space to form more 

complex or compound patterns. These patterns can be either 
movements (kinematics and dynamics) or muscle activities. 
Synergies were observed experimentally in movement 
kinematics (position, velocity and acceleration), dynamics 
(joint torque and joint force), muscle activities and also 
postures [1]. Synergies are hypothesized as building blocks 
of movement. Muscle activities of several muscles of frogs 
across a large number of movements were expressed as a 
linear combination of only four muscle synergies in [2]. 
Joint movement of hand across a number of reach and grasp 
tasks were decomposed into a small set of joint synergies in 
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[3]. Grinyaginl et al. [4] reported that synergies were found 
in velocities as well as accelerations across joints. One 
possible solution to biological complexity of the motor 
system is probably the concept of synergies.  

Synergies are viewed as common or shared patterns that 
can be generalized over a large set of movements. Over 
repeated trials of new movements, one learns these synergies 
across the distinct movements. A musician displays a 
consummate coordination or synergistic pattern across 
multiple fingers of the hand. A novice although struggles to 
perform such coordinated movements, learns through 
practice over training and learning. One possible reason for 
performing better over practice is that new task specific 
synergies are learned over time. If this is true, for learning 
involving any novel task certain task synergies will be learnt 
over training. This formed the motivation behind the current 
paper. 

The coordination patterns of the hand have been examined 
with multivariate statistical techniques [5]. These techniques 
have been used to search for synergies in hand movements at 
several levels of investigation. Based on the principal 
component analysis (PCA), [6] found support for the 
existence of static postural synergies of angular 
configuration: The shape of human hand can be predicted 
using a reduced set of variables and postural synergies. 
Similarly, Santello and Soechting [7] showed that a small 
number of postural static synergies were sufficient to 
describe how human subjects grasped a large set of different 
objects. Mason et al. [1] used singular value decomposition 
(SVD) analysis to demonstrate that a large number of hand 
postures during reach-to-grasp can be constructed by a small 
number of principal components or eigen postures. Here we 
adapted a similar approach using PCA for obtaining eigen 
postures or postural synergies in a novel transformation task.  

In this paper, the design of the experiment of novel 
transformation from glove coordinates or hand postures to 
geometric coordinates of cursor was inspired from [8]. In [8] 
it is reported that variance of the postures decreases over 
repeated trials. By using PCA we first quantized the 
reduction in the variance across trials while subjects 
progressed in learning. Can PCA help beyond measuring 
variance? Can PCs or the eigen vectors lead to 
physiologically meaningful eigen postures? If so, are these 
postural synergies learnt in this novel task? We attempted to 
answer the above questions in this paper. Results indicate 
that the number of PCs decrease across trials. One possible 
reason for decrease in the number of PCs is that subjects 
attempted to reduce the variance by avoiding unwanted 
postures which did not help them in moving the cursor 
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forward. Elimination of unwanted postures led to learning of 
common and shared postures or in other words, synergies.  

II. MATERIALS AND METHODS 

A. Materials 
The experimental setup consists of a 5DT data glove 

equipped with 14 sensors that can measure angles at ten 
finger joints including proximal interphalangeal and 
metacarpal interphalangeal joints and four sensors to 
measure abduction and adduction between fingers. A typical 
setup for the experiment is shown in Fig.1. Starting point 
and destination are represented by green and red colored 
cubes respectively. Blue colored sphere is the cursor which 
subjects can control by their right hand posture. By varying 

the hand posture subject can move the cursor.  

B. Methods 
The experiment consisted of two tasks. First task is 

moving the cursor in one dimension along the horizontal 
axis. Five subjects (including 3 male and 2 female, all right 
hand dominant) were asked to perform this task by varying 
the hand postures. Each trial was limited to 5 minutes. In the 
second task, complexity was relatively increased by asking 
the subjects to control the same cursor in two dimensions. 
Each trial here was limited to 5 minutes. In both tasks cursor 
reaching the destination is considered as success. Subjects 
were instructed that successful completion of the task 
corresponded to smooth trajectories of the cursor from 
starting point to destination.  

During the task subjects wore the data glove on the right 
hand. Sensor values of the glove were sent through 
MATLAB engine into MATLAB®SIMULINK where they 
were transformed into cursor coordinates. In the first task of 
moving the cursor in one dimension, a weighted summation 
of sensors was used. This linear combination of the sensors 
will enable a desired posture by assigning positive weights 
to desired fingers and negative weights to undesired fingers. 

Similarly, in the second task two such linear combinations 
guided the cursor coordinates in two dimensions. 

C. Data Analysis 
In both tasks, hand postures (say N in number) were 

collected along the trial time. Each posture consisted of 14 
joint angles corresponding to 14 sensors. One dimensional 
horizontal cursor movement needed a maximum of two trials 
for each subject. For each trial a matrix of dimensions 4xN 
was obtained. Two dimensional cursor movements needed a 
maximum of three trials for each subject. Similar matrices as 
in the first task were obtained here. Please note that the 
number of trials in which the subjects learnt the novel 
transformation is lesser when compared to [8]. Two possible 
reasons for this are (i) trial times were longer (about five 
minutes) (ii) number of glove sensors used in this paper are 
lesser when compared to [8]. Finally, PCA was performed 
over the obtained matrices. 

D. Principal Component Analysis 
The above matrices were normalized such that their mean 

equals 0. This was done by subtracting mean of each row 
from every element of the row. For each of the normalized 
matrices covariance matrices were calculated. The eigen 
values and eigen vectors of covariance matrices were 
computed. The number of synergies or the number of 
principal components (PCs) was computed using the 
following equation: 
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where λ1, …, λr correspond to first r largest eigen values 
written in the descending order of any covariance matrix, 
and r is no greater than m, the total number of eigen values. 
If this fraction exceeds 90% for least possible number of 
largest eigen values, then the number of eigen values is 
equal to number of PCs. Our computation behind PCA roots 
from [9].                  

E. Rendering Eigenpostures 
To render the eigenpostures, numerical method presented 

in [10] was used. According to this method, contribution of 
eigen vector to the eigenposture/ postural synergy can be 
formulated using the following equation: Si =A + α℮i, where 
Si is the ith postural synergy associated with ith eigen vector 
℮i, A is the average posture in the trial, and α represents a 
weight to constrain the obtained postures to be biologically 
meaningful. Each postural synergy thus obtained is of 
dimensions 14 x 1, corresponding to 10 joints and 4 
abduction sensors as discussed in Materials. These postures 
were rendered using a custom made virtual hand in virtual 
reality tool box in MATLAB.                                                

 
Fig. 1.  Subject 1 performing the first task of one dimensional 
cursor movement. Starting point and destination are represented 
by green and red colored cubes respectively. Blue colored sphere 
is the cursor. 
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III. RESULTS 
In each subject, five posture matrices were obtained, two 

for two trials of the first task (1D) and three for three trials 
of the second task (2D). PCA was performed on all these 
matrices. Detailed variation between percentages of variance 
accounted by PCs across increasing number of PCs averaged 
across all the subjects are shown in Figs. 2 and 3. Error bars 
indicated the standard deviation across subjects.  

As observed from Fig. 2, in the first task, from first trial 
(Fig. 2. Top) to second trial (Fig. 2. Bottom), the number of 
PCs required to accommodate 90% of variance decreased 
from four to two. Note that the percentages of variance are 
numerically equal to the fraction given in equation (1). This 
implies that variance was reduced from first trial to second 
trial as subjects learned to avoid unwanted postures. The two 
eigen postures of the second trial might correspond to learnt 
postural synergies in this novel 1D transformation task.  

In Fig. 3, the results from PCA for the second task are 
shown, from first trial (Fig. 3. Top), second trial (Fig. 3. 
Middle) to third trial (Fig. 3. Bottom). As mentioned earlier, 
for 2D cursor control task, subjects took more trials to learn 
the glove transformation. As observed from Fig. 3. from first 
trial (Fig. 3. Top) to third trial (Fig. 3. Bottom), the number 

of PCs required to accommodate 90% of variance decreased 
from five to two. This suggests that variance of the postures 
was reduced from first trial to third trial as subjects learned 
new postural synergies which are shared across a large 
number of postures, thus reducing the variance. Note that 
number of PCs in the first trial of 2D task were more than 
the number of PCs in the first trial of 1D task, indicating the 
complexity of the task which led to increase variance.  

In Fig. 4 and Fig. 5 postural synergies or eigen postures 

 
Fig. 2.  Percentage of variance changes vs. No. of PCs averaged for 
all subjects for 1D cursor control task. Error bars indicate standard 
deviations across subjects. Top and Bottom plots corresponded to 
first and second trials respectively. 

 
Fig. 3. Percentage of variance changes vs. No. of PCs averaged for all 
subjects for 2D cursor control task. Error bars indicate standard 
deviations across subjects. Top, Middle, and Bottom plots 
corresponded to first, second, and third trials respectively. 
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for Subject 1 are illustrated. Five most significant synergies 
corresponding to five largest eigen values were depicted. For 
both the tasks, the synergies were obtained from the last 
trials as subjects achieved smooth control of cursor 
movement in last trials (second trial in the 1D task and third 
trial in the 2D task). Hence during last trials subjects will 
have learnt synergies and probably recruiting them for 
smoother movement. 

 

IV. DISCUSSION 
We investigated the postural synergies in a novel learning 

task involving finger coordination. Since the map from 
fingers to cursor motion is unknown to the subjects, they 
need to learn based on trial and error. After training, the 
subjects developed novel patterns of coordination of fingers 
to handle smooth cursor trajectories. Over all, the results 
from PCA suggest that by learning, variance across the 
postures decreases gradually with increasing trials. This is in 
consistence with the findings in [8].  

The experiment was designed to investigate whether the 
learning involves the formation of new postural synergies. 
Figures 4 and 5 depict the postural synergies obtained for 
Subject 1. In both tasks, the first synergy was very similar to 
the desired hand posture. Note that subjects do not have the 
knowledge of this desired hand posture and they learned it 
with training. The other synergies although not related 
directly to the desired hand posture might have been used to 
eliminate the ambiguities between the desired and undesired 
postures. 

V. CONCLUSION AND FUTURE SCOPE 
In this paper we presented a method using PCA to 

quantize and characterize the variance of hand postures in a 
novel transformation task. Quantization of variance was 
achieved using PCA and decrease in the number of PCs 
suggests decrease in variance with learning. To characterize 

decrease in the variance, eigen postures were rendered. 
Eigen postures indicated the presence of task specific 
synergies.  

A comparison of postural synergies across the trials might 
lead to demonstration of progressive development of 
synergies. A comparison of synergies across the subjects can 
give information about a generalized set of synergies which 
can further be used in rehabilitation purposes. We view these 
as future scope. 
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Fig. 5.  Synergies from Subject 1 performing the second task of two 
dimensional cursor movement, arranged in decreasing order of their 
significance from left to right. 

 
Fig. 4.  Synergies from Subject 1 performing the first task of one 
dimensional cursor movement, arranged in decreasing order of their 
significance from left to right. 
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