
  

  

Abstract— This study explores the electroencephalographic 
(EEG) correlates of emotions during music listening. Principal 
component analysis (PCA) is used to correlate EEG features 
with complex music appreciation. This study also applies 
machine-leaning algorithms to demonstrate the feasibility of 
classifying EEG dynamics in four subjectively-reported 
emotional states. The high classification accuracy (81.58±3.74%) 
demonstrates the feasibility of using EEG features to assess 
emotional states of human subjects. Further, the spatial and 
spectral patterns of the EEG most relevant to emotions seem 
reproducible across subjects.  

I. INTRODUCTION 
IO-inspired multimedia research has been a growing 
research topic. The ultimate goal of this field is to study 

the interaction between the multimedia content and 
psycho-physiological and neurophysiologic measures of the 
listeners or viewers.  By combining techniques in multimedia 
and bio-signal processing, these studies aimed to not only 
create the concept of the human-centered orientation, but also 
build a multimedia environment in which users can fully 
immerse in enjoyment. This study focuses on assessing brain 
dynamics associated with emotions during music listening 
and try to analyze it from brain activity pattern.  

Electroencephalography (EEG) is a noninvasive and direct 
measurement of brain activity with temporal resolution in 
milliseconds. EEG has been widely used in the field of 
cognitive neuroscience to investigate the regulation and 
processing of emotions for many years. By transforming the 
EEG signals into the frequency domain, several EEG spectral 
components have been found to reliably accompany   
functional states of the brain. The most widely used 
components are defined in different frequency ranges, such as 
delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 
Hz) and gamma (31-50 Hz) [1]. In fact, several brain 
oscillations in various frequency bands are associated with 
multifold brain functions [2]. With respect to emotion 
research, one of the most common indicators of emotional 
state is the alpha power asymmetry formed by spectrum 
power difference between a symmetric electrode pair, when 
measured at the anterior portion of brain [3, 4]. Other 
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literatures reported other brain regions such as the right 
parietotemporal region [5] and spectral contents such as theta 
[6, 7] involving in the processing of emotional information. It 
is, however, not too surprising that complex cognitive 
functions are accompanied by several brain oscillations in 
combination [2].  

This study explores the EEG correlates of emotions during 
music listening using principal component analysis (PCA) to 
characterize spatial and spectral dynamics of EEG. The 
components accounting for distinct features of the EEG are 
used to classify different self-reported emotional states. 

II. MATERIAL AND METHOD 

A. EEG Recording and Experiment Procedure 
This work extended from our previous study [8] in which 

26 subjects’ EEG data were recorded during music listening. 
Data recording and experiment procedure are briefly 
depicted. A thirty-two (32) channel EEG system (Neuroscan, 
Inc) was used to record the EEG of subjects participating in 
the music listening experiments. Its sampling rate and filter 
bandwidth were set to 500 Hz and 1~100Hz respectively. 
Subjects were instructed to report their emotions (joy, angry, 
sadness and pleasure) after each of sixteen (16) 30-s segments 
during the music listening. 

B. Feature Extraction 
The recorded EEG data were first preprocessed to remove 

obvious and large motion artifacts using visual inspection. 
Then, short-time Fourier transform (STFT) with Hanning 
window of one second and without overlap was used to 
extract the power spectral density values in different 
frequency bands, including delta (1-3 Hz), theta (4-7 Hz), 
alpha (8-13 Hz), beta (14-30 Hz) and gamma (31-50 Hz). In 
this way each of sixteen 30-s segment of EEG recording 
would yield around 30 spectral points (in total of 480 points 
per subject). In addition, our previous study [8] showed that 
emotion-state classification based on spectral differences 
between  symmetric electrode pairs, ASM12, outperformed 
that based on spectral values of individual scalp channels. 
This study adopted the method by calculating spectral 
differences of 12 symmetrical pairs as the input features for 
PCA. Fig. 1 shows 12 symmetric electrode pairs from 
32-channel EEG, including Fp1-Fp2, F7-F8, F3-F4, FT7-FT8, 
FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-TP8, CP3-CP4, P3-P4, 
and O1-O2.  

Then, PCA is used to separate EEG spectra into 
uncorrelated and significant components. The goal is to 
reduce the dimensionality of input dataset where there are 
probably a large number of related variables. This is achieved 
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by combining input variables to generate a set of new 
variables called principal components (PCs) that are ordered 
by the variance counted for the input dataset. By retaining 
first few PCs accounting for most of the variance of the 
dataset, the dimensionality of the feature space could be 
reduced. The resultant lower-dimensional feature space was 
used for further analysis. Here, PCA was applied to ASM12, 
with spectral differences in delta, theta, alpha, beta, and 
gamma forming a feature dimension of 60 (12 electrode pairs 
x 5 frequency bands). In order to investigate how much 
variance should be retained to lead an acceptable 
performance, the results of retaining 80-100% of the total 
variance was compared, where the dimension of feature space 
would vary depending on the number of retained PCs.  

The corresponding emotional class for each segment was 
assigned according to the subject’s self report. It was noted 
that 30 sample points extracted from each 30-s segment have 
the same emotional class. Further, before feeding data to 
classifier, the feature vector were normalized at the range 
from 0 to 1. 

C. Feature Classification and Selection 
This study applied a support vector machine (SVM) to 

EEG to perform the emotion-specific classification. SVM is 
one of the most popular supervised learning algorithms for 
solving the classification problems. The basic idea is to 
project input data into a higher dimensional feature space via 
a transfer kernel function, which is easier to be separated than 
that in the original feature space. Depending on input data, the 
iterative learning process of SVM would eventually devise 
optimal hyperplanes with the maximal margin between each 
class. These hyperplanes would be the decision boundaries 
for distinguishing different data clusters. This study used 
LIBSVM software [9] to build the SVM classifier and employ 
radial basis function (RBF) kernel to nonlinearly map data 
onto a higher dimension space. 

PCA is not a feature selection but a feature extraction 
method. Although the new attributes are obtained by a linear 
combination of the original attributes. Dimensionality 

reduction is achieved by keeping fewer components 
accounting for most of the variance. However, the variation 
of each PC is confounded with both factors coming from 
within- and between-classes. Therefore, in order to explore 
which PC is informative to differentiate different emotion 
states, the between-class variation need to be identified first. 
To this end, the study adopted a feature selection tool [10], in 
which an F-score statistical index was used as a feature 
selection criterion to iteratively generate a rank list describing 
the contribution of feature attributes by the SVM classifier.  
The F-score of the ith feature is defined as: 

 

                 
 

where ix and ilx ,  are the average of the ith feature of the entire 
data set and class l data set (l =1~g, g=4 for four emotion 
labels) respectively; , ,l k ix  is the ith feature of the kth of the 
class l instance, and ln is the number of instances of class l. 
The F-score is a simple technique for measuring the 
discrimination of two sets of real numbers; the larger the 
F-score, the greater the discrimination. It turns out that the PC 
with highest F-score value represents larger between-class 
variation and less within-class variation.  

III. RESULT AND DISCUSSION 
This section shows the results of using components 

obtained by PCA of ASM12 for emotion-specific EEG 
classification and feature selection. This study used a 10-fold 
cross-validation scheme with randomization to each subject’s 
dataset to increase the reliability of the recognition rates. In a 
10-fold cross-validation, the EEG feature vectors were 
randomly split into 10 subsets. SVM was trained with nine 
subsets of feature vectors, whereas the remaining subset was 
used for testing. This procedure was repeated 10 times with 
each subset having an equal chance of being the testing data. 
This procedure was then repeated ten times with different 
subset splits. The accuracy was evaluated by the ratio of 
correctly classified number of samples and the total number 
of samples.  

In order to investigate how much variance should be 
retained to lead an acceptable performance, the results of 
retaining 80-100% of the total variance was compared. Fig. 2 
shows an overall classification result using different 
percentages of retained variance from 80% to 100%. It is 
evident that maintaining 100% of variance with no dimension 
reduction would lead the highest classification accuracy of 
85.72±3.22%, whereas the classification accuracy declined 
while less variance was retained. Retaining 95% of the 
variance decreases the number of remaining components 
significantly (from 60 to 38.58 ± 3.43 depending on the 
subjects) while only marginally degraded the classification 
accuracy (to 81.58±3.74%). That is, PCA-based ASM12 
retaining 95% of the variance could yield a satisfactory 

 
 

Fig. 1. The locations of 12 electrode pairs on 32-channels EEG. (Electrodes
in gray represent the symmetric pairs for ASM12 feature extraction) 
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accuracy with a dimension reduction around 36%, 
considerably enhancing computational efficiency. 

Next, the discrimination power of PCs was assessed by the 
F-score index to select components with the largest ratio of 

between- and within-class variation. Fig. 3 shows the 
box-and-whisker plot of first two PCs and two PCs with 
highest F-scores. Even though the first two PCs summarized 
largest variance in the data, they mainly accounted for the 
within-class variation, whereas the F-score selected PCs were 
evidently more sensitive to between-class variation. Next, 
EEG-based emotion-state classification based on the same 
number of components with top variance (obtained by PCA 
directly) and top F-scores were compared. Fig. 4 shows the 
classification accuracy of this study. It can be seen that the 
classification accuracy using component with high F-scores 
outperformed that using components with highest variance, 
and the improvements were statistically significant (p<0.05). 
This study demonstrated it is beneficial to use more 
informative (discriminative) components than the 
components accounting for larger variance as inputs for 
EEG-based emotion classification.  

Finally, the spatial and spectral information of components 
with top F-scores were assessed by examining the 
topographies of the components, which was implemented via 
EEGLAB [11]. Fig. 5 shows the weighting of ASM12 feature 
attributes, normalized eigenvector of the top F-score 
component, at different frequency bands in 4 sample subjects. 
As can be seen, the Fp1-Fp2 and FT7-FT8 pairs 
predominated the weightings in the eigenvectors at theta band. 
The relative weighting of the T7-T8 pair and F7-F8 pair were 
high in the gamma band and delta band respectively. The 
spatial and spectral attributes of most informative 
components were stable across subjects.   

IV. CONCLUSION 
This study tested the feasibility of using principal 

component analysis and support vector machine to 
characterize EEG spectra during music listening. Principal 
components of EEG power accounting for up to 95% of the 

 
 

Fig. 2. Averaged subject-dependent classification results using different
percentages of retained variance from 80% to 100% and the corresponding
number of PCs needed. 
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     Component w/ 1st highest F-score     Component w/ 2nd highest F-score

   
Fig. 3. An illustration of box-and-whisker plot in one subject showing the first
two PCs and first two F-score selected PCs. (Label index in x-axis means the
emotion classes and y-axis means the amplitude of projected PC). 
 
 

 
 

Fig. 4. The comparison of averaged subject-dependent classification results
using top F-score versus top variance components. 

 

Fig. 5. An illustration of eigenvector loading on brain topology mapping at 
different frequency bands in four subjects. (The symmetry pattern is due to 
the fact that the spectral differences were between symmetrical pairs and 
normalized value 1 shows in red and whereas normalized value 0 shows in 
green) 
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variance in the data allowed an accurate classification of 1-s 
EEG segments under four self-reported emotions. Further, 
F-score index was effective for selecting components with 
most discriminative information associated with different 
emotional states. The factor loading topographies exhibited 
the reproducibility of the spatial and spectral patterns 
accompanying emotions during music appreciation. A natural 
next step is to quantitatively assess the complex 
subject-independent EEG correlates of emotions.  
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