
Abstract—The synchronous effects of a pair of Morris-Lecar 
neurons, which was connected by excitable and inhibitory 
coupling, is studied in this paper. The theory of phase response 
is applied to examine how synchronization patterns are 
influenced by coupling strength. Based on the numerical 
simulation, we derive the region of synchrony and asynchrony 
as a function of coupling strength and the external stimulation. 
These analysis may provide us better insight into neuronal 
encoding and information transmission. 

I.  INTRODUCTION  
Synchronization phenomena are important for neural 

encoding in neuronal system and attract many people to 
explain the very existence of coherent oscillatory activity. It 
has been suggested that the neuronal system process 
information through the discrete action potential array. This 
activity may be important for neuronal coherent activity[1], 
cognition, memory and study[2] and functionality 
handicaps[3]. But the mechanisms of synchrony remain an 
subject of debate and spurred us to study the synchronization 
and desynchronization of the neuronal system. 

Recently investigations focusing on the synchronization 
of coupled neurons provide me some inspiration to study this 
problem. Chow and Kopell[4] study the dynamics of two 
coupled neurons with gap junction. They found that weak 
electrical coupling can promote synchrony and sometimes 
foster antisynchronous activity as well. Whereas Lewis and 
Rinzel[5] pay their attention to the combination of electrical 
and chemical coupling. They use an integrate-and-fire model 
to examine the synchronization patterns and find that 
increasing the electrical coupled strength can promote 
synchrony and antisynchrony which is dependent on the 
speed of inhibitory synapses. Park et al. [6] focus on the 
effects of applied electric fields on synchronization. They 
don’t care the type of coupling and introduce a simple phase 
oscillator reduction to evaluate the synchronization of neuron 
cells.  
Here, we study pairs of intrinsically oscillating Morris-Lecar 
neurons connected by chemical coupling. Phase-locking 
patterns in the neural cells are systematically examined over 
a wide range of intrinsic frequencies and coupling 
parameters. The  ultimate  goal  of  our   work  is  to  build  a    
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qualitative framework for understanding how excitable and 
inhibitory coupling affect dynamics in neuronal networks. 

II. MODELS AND METHODS 

A. Morris-Lecar Model 
In this paper, the Morris-Lecar model was put forward to 

study because it is appreciate variable range of class I 
excitation and can simulate quite a few of phenomenon in 
different systems of excitability. The equation of the model 
can be described as 
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Where
Ca Ca K Ki L Lon ( ( ) () ) ( )i i i

i
i iI g M V V V g N V V g V V∞= − + − + − , 

1,2i = . [0,0.5]ρ ∈  is the symmetric factor. syng  is channel 
conductor of synapse, s  is the ratio of connective acceptor. 

syn
postV  is the threshold potential of post-synapse which value 

determines the style of the synapse connection, excitable or 
inhibitory. The monotone increasing function, ( )s V∞ , can be 
described as 

syn

1
1 exp ( )

( ) preV V
s V

σ∞ ⎡ ⎤+ − −⎣ ⎦
= , 0σ > .  The open-state 

probability functions, M ∞ , N∞ , and the time constant Nτ , 
are given as 
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Throughout this paper, the parameters are chosen to be 
C =20m , g =8K , g =2L , g =4Ca , V =-80K , V =-60L , 
V =120Ca , 1V =-1.2m , 2V =18m , 3V =12m , 4V =17.4m , 

=1/15mφ .In this paper, we treat extI  as the main control 
parameter, and analyze synchronizations in the parameter 
plane of extI  and syng . The standard parameter of the 
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excitable and inhibitory synapse is given by Destexhe et al. 
[7]. For excitable synapse, the parameters are shown as 

0post
synV = , 2pre

synV = , 2.2α = , 0.19β = , 4.5σ = . But for 
inhibitory synapse, the parameters can be described as 

70post
synV = − , 2pre

synV = , 10α = , 0.18β = , 4.5σ = . 

B. The Measurement of Phase-Lock Synchronization  
Consider a periodically spiking neuron receiving an 

external stimulation that increases the membrane potential, 
and put the arbitrary initial point corresponding to the zero 
phase anywhere else on the limit cycle. We define the spike 
times kt ，where 1,2,3...k = are the k th peak of the spike, 
as the times when the spike reach the peak. Then the phase 
of an active spiking neuron at an arbitrary time t between the 
two peaks ( 1k kt t t +≤ ≤ ) can be defined as: 

1
( ) 2 ( ) 2k

k k

t t
t tt kφ π π

+

−
−= +   [6, 8]. The phase-locked state of 

two coupled oscillators can be defined as 2 1( )t n mφ φΨ = −  
where n  and m  are integers ( ,n m =1,2,3…), 1φ  and 2φ  
are the phase of the two oscillators. the condition of an 

:n m  phase-lock state can be written as 

2 1 0n mφ φ ε− − Ψ < , 00 2π≤ Ψ <  and 0ε →  when t → ∞  
When 1:1 phase locked the relative phase of two coupled 
neurons can be expressed as: 
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where the superscript of kt  is the sequence number of the 
neuron. The degree of phase-locking can be quantified by the 
synchronization index γ  , incomplete in the form 

2 2sin( ( )) cos( ( ))i it tγ ψ ψ= +                            (4) 
where  is an average of all the spiking events. When the 
two neurons are incoherent, γ  will approach to zero for the 
large N . On the other hand, if the neurons are phase-locked, 
γ  will approach its maximal value of one [6]. 

C. Phase Response 
In this paper, we consider two heterogeneous neurons to 

be synchronized if they simply phase lock to each other. We 
just study the out-of-phase synchronization and the 
relationship between the phase lock state, the coupled 
intensity and the degree of the neurons’ heterogeneity. Any 
dynamic system with stable limit cycle, if which the 
perturbation apllied to is sufficiently weak, can typically be 
reduced to one-dimensional phase equation [9]. For the 
following discussion, we assume a differential dynamical 
system of the ith uncoupled neuron which can be written as 

( )i ix f x=� , m
ix ∈\ , 1, 2,...i =                                    (5) 

where ix  is a multi-dimensional vector describing the state 
of the ith neuron. Supposed there is a period-T limit circle in 
this system, one can get the reduced phase system through 
introducing the scalar phase variable ( ) [0, ]x Tθ ∈ . Now we 
add the time-varying item ( , )ip x tε  to (5), the dynamical 
system can be expressed as  

( ) ( , )i i ix f x p x tε= +� , m
ix ∈\ , 1, 2,...i =                 (6) 

where 1ε �  is the strength of disturbance which is positive. 
When 0ε = , (5) can be translated to ( ) 1ixθ =� ; but when 

0ε ≠ , 1 ( , )x xx p x tθ θθ ε∂ ∂
∂ ∂+= ⋅ = ⋅� � . The PRC can be defined 

as 
0 ( )

( )
ixQ θ

θ
θ ∂

∂ Γ
= , so (6) can be translated to the phase 

equation: 
( ) ( ( )1 , )iQ p x tθ θ θε= +�                                         (7) 

To get a conceptual picture of the whole network 
character such as synchronization, the equation tθ ϕ= +  is 
given where t is isolated oscillator without couple, ϕ  is the 
phase deviation to the isolated oscillator generated by the 
network input. Combining (9), the relative phase equation 
can be expressed as ( ) ( ( ), )iQ t p x t tϕ ε ϕ ϕ= + +� . For N 
neurons coupled each other, the phase 
variable ( )i i ix x θ= , i i tϕ θ= − , then 

1

( ) ( ( ), ( ))i i i ij ij i i j j

N

j

Q t p x t x tϕ ϕ ε ϕ ϕ
=

= + ⋅ + +∑�             (8) 

Because the couple strength is very weak ( 1ε � ), the 
change of iθ  is more quickly than iϕ , so we can integrate (11) 
in the period of nondisturbant system by mean value theory, 
get 

1
( )i ij ij j i

N

j
Hϕ ε ϕ ϕ

=

= −∑� , where 

0 0 0
1( ) ( ) ( ( ), ( ))ij j i ij j i

T
H Q t p t t dt

T
ϕ ϕ ϕ ϕΓ + −Γ− = ⋅∫    (9) 

is the effective couple function. In this paper, Malkin method 
is introduced to calculate the PRC [9]. Q( )θ (period-T), 
called the adjoint solution, is determined by the linearized 
dynamical equation [ ]( ( )) TQ Df x t Q= −� , where [ ]( ( )) TDf x t is 
the transpose of the Jacobian matrix of ( )f x with respect to 
the state variable x. ( )Q θ is then further normalized 
according to the condition ( ) ( ( )) 1Q t f x t⋅ = , where the 
prime denotes the rate of change of the vector field along the 
periodic orbit ( ( ))f x t .  

III. RESULTS AND ANALYSIS 

A. Inhibitary Coupling 
In this section, we show numerical results obtained by 

the analysis of synchronization characteristics of two 
coupled M–L neurons as the current stimulation and the 
heterogeneity parameter is varied. We only set different 
current stimulate of different coupling style. Supposed the 
natural frequency of the two neurons is 1 iω+ , 1, 2i = , the 
coupled function can be described as 

m( , ) ( ( ) ,0)ij i j j ip x x V V C= − − . Therefore the reduced 
phase equation from (1) is shown as follows: 

1 1 syn 12 2 1
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We can study the dynamics of phase synchronization of 
two oscillators by phase relation between them. The equation 

2 1η ϕ ϕ= −  denotes the relative phase between two neural 
oscillators, so that (10) can be transformed to: 
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21 12((1 ) (2 ) ( ))syn H Hgη ρω η ρ η= − −+ −�              (11) 
where 2 1ω ω ω= −  is the natural frequent mismatch of two 
neurons in isolation. 12H  and 21H  is the effective coupling 
function. For general identical neurons, the effective phase 
sensitivity function can be defined as follows: 

21 12( ) 2(1 ) ( ) 2 ( )G H Hη ρ η ρ η= − − −                     (12) 
The two-dimension system is reduced to one-dimension: 

syn ( )g Gη ω η= +�                                                (13) 
For the asymmetric part of coupled connection, the 

effective coupling function is equal to each other 
( 12 21HH H= = ), which can be described as: 

1 0 0
m

syn0

1( ) ( ) ( )( ( ))
T postH Q t s t V V t dt

C T
η η= + −∫       (14) 

where 0 ( )s t  is the s  of membrane potential 0 ( )V t  on the 
limit cycle corresponding to the isolated neuron. Fig.3(a) 
illustrate the effective coupling function of the spiking 
neuron ( )H η  and ( )H η− . As one can see from this graph, 
the effective coupling function ( )H η (solid line) and (dashed 
line) ( )H η−  are symmetrical by / 2Tη = . 
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Figure 1.  (a) the effective coupling function with inhibitory coupling; (b) 
the curves of the function ( )Gρ η with different symmetric factors ρ ; (c) an 

illustration of the synchronous solution of inhibitory coupling 
For a pair of neurons to phase lock to each other, the 

necessary condition is 0η =� . For a particular choice of the 
parameter I , the natural frequency mismatch of the 
neurons, ω , is constant and G is a function of the phase 
difference η  only. The condition for phase-locking 
becomes： 

( )syng Gω η∗= −                                                  (15) 
where η∗  is the locked phase lag between the two neurons. 
A schematic illustration of this phase-locked criterion is 
given in Fig. 4. As seen from Fig. 4, the crossing points of 
the constant value of syngω− and the function ( )G η are the 
possible phase-locked equilibrium states predicted by this 
reduced phase model for a particular choice of the parameter 
I . The stability of these phase-locked states is given by the 
sign of the local slope of ( )G η  at these locations. In Fig.4, 
the left circle (open) is the unstable equilibrium and the right 
(filled) one is stable. Fig.3 also illustrate this relation ofω , 

syng  and synchronous solutions. The critical values define 
the necessary and sufficient condition that the synchronous 
solution exist, described as follows: 

min ( ) max ( )synG Ggη ω η≤ − ≤                         (16) 
When syngω− approaches to the thresholds of ( )G η , two 
equilibria get close to each other and disappear on the 

extreme points. The more closed to the antiphase 
synchronous solution, the stronger syng  is acquired. Because 
of the limit of syng , the antiphase synchronization can only 
be achieved if two coupling neurons are completely identical. 

Fig.3(b) illustrate how the dynamic characteristics of 
coupling system was influenced by the coupling symmetric 
constant ρ . The curve ( )G η  increases with the increasing 
of ρ , and the stable equilibrium get close to 2Tη =  from 
left, that is, the out-of-phase state to anti-phase state. In this 
procession, the in-phase state is always existing and unstable. 
For strong coupling, the synchronous character may be more 
complex or even the synchronization is inhibited. One should 
note that, for non-identical neurons, an exact phase-locked 
state with 0η = is not expected to be stable in this simplified 
model. Biologically, this is a reasonable conclusion since 
synaptic coupling cannot be instantaneous, and no two 
neurons are exactly identical. 

B. Excitable Synapsis 
Fig.5 illustrate the effective phase sensitivity function of 

excitable synaptic fire neuron. For identical neurons, the 
phase sensitivity function with different coupling factor 
( 0,0.1 0.5ρ = … ) was given (Fig.7). One can note that the 
phase lock state was determined by the natural frequency 
mismatch ω and the coupling factor ρ . The ( )G η  increase 
evidently with decreasing of ρ . When 0.4ρ < , ( )G η  is 
above 0 for any η , which is mean that there is no crossed 
point between ( )G η  and 0ω = . The two neurons do not 
phase lock to each other. 

The next case is for the bistable states. As we have seen 
in ( )G η  curves, we study the case for 0.4ρ > . For 
symmetric coupling ( 0.5ρ = ), the ( )G η  curve was shown 
in Fig.7. Upon magnification, one can note that this curve 
cross syngω−  four times when syngω−  is between the 
lines 1l  and 2l . In this region, two of these synchronous 
solutions are stable (filled circles) and the other two are 
unstable (open circles). If reducing the coupling factor, one 
can note that the region of bistable state is increase and 
vanished when 0.3ρ ≤ . 

C. Simulating Results. 
Based the analysis given above, we present the results of 

our simulation on synchronous characters of ML coupling 
neurons as the strength of external current stimulate and 
coupling. Firstly, the estimation of the synchronous region 
based on the assumption of weakly symmetric coupling is 
given (Fig.8(a)(b)). But this assumption can not be applied to 
strong couple because the characters of isolated neuron have 
been changed and the group properties are represented. A 
more realized illustration of our network’s synchronous 
behavior is presented in Fig.8(c), (d). In these figures, we 
show the synchronous region derived from simulation. After 
the two spiking neurons are stable, we calculate the γ  index. 
If it approaches to one, the system can be synchronized. An 
interesting feature of this phase diagram is the boundary 
between the phase-locked and asynchronous (phase-drifting) 
states. The boundary can be estimated out of which the index 
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γ  decrease dramatically. Comparing Fig.8(c) and Fig.8(d), 
one can find that the synchronous region is smaller than 
estimating for the coupling strength has confined the space 
of synchronous activity and make neurons suppress 
collective network activity. Lastly, for the same parameters, 
the excitatory coupling strength needed for synchronization 
is larger than the inhibitory one. Therefore the inhibitory 
neurons enjoy larger synchronous region than the excitatory 
ones for weak coupling. By the way, for any neural coupling, 
there exist a couple of critical values beyond which the 
synchronization can not be achieved for any coupling 
strength. 
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Figure 2.  (a) the curves of the function ( )Gρ η with different symmetric 
factors ρ (0, 0.1, 0.2, 0.3, 0.4, 0.5) and (b) the magnification of (a). The 
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Figure 3.  the condition that the phase-locked states of excitable coupling 

neurons exist when 0.5ρ = (a, b)and 0.4ρ = (c, d) 

IV. CONCLUSIONS AND DISCUSSION 
In this paper, we employed phase oscillator formalism to 

attempt to simplify the neuronal interactions using phase 
sensitivity curves for each individual neuron. Furthermore, 
we introduced a synchronous index to clarify the degree of 
synchronization. It has been demonstrated that this method 
can be used to in-phase, anti-phase, and out-of-phase 
synchronization. Whether this can be implied to the phase-
locking (not 1:1 ) neurons require more support of 
simulation and experiment. 

We have shown that the synchronous region of ML 
neurons with excitatory and inhibitory coupling, which help 
us understand more properties of neuron network. For 

identical neurons we use in this paper, the same external 
stimulation can induce synchronization with a very weak 
couple. With the disparity of stimulation expanding, the 
coupling strength need to phase-locking increase. It would be 
specially mentioned that strong coupling may block the spike 
of single neuron and even wipe the characters of the whole 
network. Since the computational complexity of such 
networks increases rapidly with size, further investigation on 
synchronization dynamics of more types of coupled neurons 
may help us understand the essence of encoding and 
decoding of information. 
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Figure 4.  (a, b) the estimate of the synchronous regions based on the 

weakly coupling. (c, d ) the synchronous regions based on the numerical 
simulation. The left hand side of the figure is excitable coupling whereas 

the right hand side is the inhibitory one. 
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