
  

  

Abstract—An automated classification algorithm for the 

detection of expiratory ineffective efforts in patient-ventilator 

interaction is developed and validated. Using this algorithm, 

5624 breaths from 23 patients in a pulmonary ward were 

examined. The participants (N=23) underwent both 

conventional and non-invasive ventilation. Tracings of patient 

flow, pressure at the airway, and transdiaphragmatic pressure 

were manually labeled by an expert. Overall accuracy of 94.5% 

was achieved with sensitivity 58.7% and specificity 98.7%.  The 

results demonstrate the viability of using pattern classification 

techniques to automatically detect the presence of asynchrony 

between a patient and their ventilator. 

I. INTRODUCTION 

NSURING quality interaction between a patient and their 

ventilator is critical to minimize the work of breathing of 

the patient. Increased work of breathing caused by patient-

ventilator asynchrony is associated with negative patient 

outcomes and has been shown to be highly prevalent; studies 

have shown up to 43% of patients suffer severe asynchrony 

[1].  

With proper supervision and adjustment of ventilator 

settings, asynchrony may be mitigated by the clinician. 

However, monitoring asynchrony is a challenge. Knowledge 

of its existence firstly requires high resolution and real-time 

display of airway pressure delivered by the ventilator, the 

patient’s airflow and a measure of inspiratory activity, such 

as diaphragmatic electromyogram (EMGdi) or esophageal 

pressure, measured invasively via a balloon catheter. 

Furthermore, expert visual interpretation of these signals is 

critical to diagnose the quality of patient-ventilator 

interaction. 

Attempts to automate this process have been few and have 

either not taken a pattern classification approach or have 

used very few morphologically-based features [2, 3].  
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One of the common and physiologically significant types 

of patient-ventilator asynchrony is the presence of ineffective 

patient efforts occurring during the expiratory phase: the 

‘expiratory ineffective effort’ (eIE). Occurring mainly in 

obstructive patients, these are often caused by intrinsic 

positive-end-expiratory pressure (PEEPi), which acts as an 

inspiratory threshold load that the respiratory muscles cannot 

overcome, thus resulting in an inability to systematically 

trigger the ventilator.    

This paper reviews a cohort of signals describing patient-

ventilator interaction in 23 subjects acquired from an 

existing database, all recorded in a respiratory unit 

(Fondazione S. Maugeri, Pavia, Italy). It furthermore 

describes an approach for algorithmically detecting the 

prevalence of eIEs on a breath-by-breath basis. Such a 

method, for monitoring this kind of patient-ventilator 

asynchrony, is of critical advantage in clinical decision-

making procedure to reduce the work of breathing and 

increase efficacy of treatment, for patients benefitting from 

ventilatory support. 

II. METHODS 

A. Database 

Data from 23 subjects were drawn from an existing 

database at the pulmonology unit at the Maugeri Institute, 

Pavia, Italy. Patients had either undergone non-invasive 

ventilation after recovering from acute respiratory failure, or 

had received conventional ventilation in the advanced stage 

of weaning. For each subject, between 10-20 minutes of 

respiratory data was obtained consisting of the following 

tracings. Flow at the airway opening was measured with a 

heated pneumotachograph (Hans-Rudolf 3700, Kansas, 

USA) and a differential pressure transducer (Honeywell ± 

300 cm H2O; Freeport IL, USA) placed between the mask 

and the Y-piece of the ventilator, or at the Y-piece. Airway 

pressure (Pao) was measured from a side port between the 

pneumotachograph and the face mask, or the endotracheal 

tube. Esophageal and gastric pressures were measured with a 

balloon-catheter system. To this end, an esophageal balloon 

was positioned at the lower third of the esophagus, filled 

with 0.5 ml of air and a gastric balloon filled with 1 ml of 

air. The proper position of the balloon was verified using the 

occlusion test. Transdiaphragmatic pressure (Pdi) was 

calculated as the difference between gastric (Pga) and 

esophageal (Pes) pressures.  
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B. Breath Segmentation Algorithm 

A segmentation algorithm was applied to the data to 

demark each breath instance. A state-machine consisting of 

four states and operating on the flow and volume signals 

identified the points in time at the beginning and end of each 

inspiration, correspondingly when the state machine enters 

the Confirmed Inspiration and the Confirmed Expiration 

states (Fig. 1). Flow and volume thresholds expressed in the 

state diagram logic expressions are α = 0.05 L/s  and β=150 

mL. 

 
Fig.1. Breath segmentation state diagram. 

C. Visual Asynchrony Scoring 

Visual scoring of asynchronies and correction of breath 

demarcation was carried out by a single physician 

specialized in mechanical ventilation using a custom 

designed graphical user interface (Matlab, MathWorks Inc., 

USA). The physician was blinded to the clinical data of the 

patient and was not involved in their care. The beginning of 

inspiration was globally adjusted for each patient by 200 ms 

(±50 ms) to align with the deflection of Pdi to correspond 

with the initiation of patient effort. Subsequently, breaths 

were labeled as containing an eIE if a positive Pdi tidal 

swing occurred during expiration, but was not followed by 

inspiratory support from the ventilator (Fig. 2). 
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Fig. 2. Shows flow, airway pressure (Pao) and transdiaphragmatic pressure 

(Pdi) for normal breath (A) and breath with an eIE (B). Positive swings in 

Pdi indicate inspiratory effort by the patient. Note, B is characterized 

predominantly by a perturbation on the flow signal during mid-expiration. 

 

A total of 5624 breaths were analyzed and labeled as 

summarized in Table I. 

D. Feature Selection 

As the goal of this study was to automate the detection of 

asynchronies via non-invasive and simple means, features 

were derived using only flow and Pao and not from Pdi. The 

following features were derived for each breath and are 

summarized in Table II: 

Physiologically based features: 

RRbreath = 1/Tbreath, the respiratory rate pertaining to the 

particular breath calculated as the inverse of the period; RR 

ratio = RRbreath/RRmean, the ratio of the respiratory rate of the 

breath to the mean respiratory rate calculated over 5 minutes; 

IE ratio = Ti/Tbreath, the ratio of inspiratory time to the period 

of the breath; VolI – absolute volume inhaled (the integral of 

the flow during inspiration); VolE – absolute volume exhaled 

(the integral of the flow during expiration); breathLeak = 

VolI - VolE, the volume leaked between inspiration and 

expiration; Vol ratio = VolI / VolE, the ratio of inspiratory to 

expiratory volumes. 

Respiratory mechanics based features: 

Mechanics parameters were calculated for both inspiratory 

and expiratory phases (denoted by subscript i and e 

respectively) of each breath by a multiple linear regression 

fit of the pressure, flow and volume data to the first order 

single compartment lung model: 

PEEPtot
C

Vol
RFlowPao ++= ))((  

where PEEPtot is the sum of the applied pressure during 

expiration and the patient’s intrinsic PEEP, R is the 

resistance of the respiratory system, and C is the compliance 

of the respiratory system. RC=τ , is the patient’s time 

constant. 

Expiratory flow morphology based features: 

Often asynchronies are characterized by irregularities or 

perturbations on the pressure and flow signals. As the signal-

to-noise ratio of these irregularities is generally higher on the 

flow signal than the pressure, flow was used as the main 

signal for deriving the feature set. To identify these 

irregularities during expiration, the goal was to derive 

significant deviations of the flow curve from an 

approximated ‘normal’ expiratory shape. A segmented 

moving average filter with time constant 0.1 s was applied to 

the flow signal separately for each respiratory phase. For 

each period of expiration, the location of the maximum 

expiratory flow occurring in the first 25% of expiration was 

obtained.  

TABLE  I. SUMMARY OF BREATH LABELS BY HUMAN EXPERT 

Category Count % of Total 

Expiratory Ineffective Effort 567 10.1 

Other 5057 89.9 

Physical breaths 5624 100 
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interpMinima - for the remainder of expiration, local minima 

were obtained at intervals of 150ms. Interpolation from these 

minima for the duration of expiration was made. The result 

was used to de-trend the moving average by subtraction, and 

the power (RMS) was obtained for the resultant signal,   

interpMinima-2/3 – using the de-trended interpolated 

minima signal above, the power (RMS) was calculated for 

the last two thirds of expiration. 

PW linear approx power - a piecewise bilinear 

approximation was made for the remainder of expiration 

after the location of maximum expiratory flow. The second 

linear component was used to de-trend the moving average 

by subtraction. The power (RMS) was obtained for the 

resultant signal.  

PW vol deviation – the integral of the rectified and de-

trended moving average (via subtraction of the piecewise 

linear approximation) was calculated.  

PW dist flow maxmin – the indices of the minimum and 

maximum de-trended moving average (via subtraction of the 

piecewise linear approximation) were obtained. These were 

used to locate the corresponding real flow values in the 

moving average expiratory flow signal. The amplitude 

distance between them was calculated. 

 PW distance ratio – the PW dist flow maxmin taken as a 

fraction of the distance between the maximum flow point 

(calculated previously) and the peak expiratory flow. 

Morphological features were normalized across their mode 

value for each patient. 

E. Classifier Model: Parzen Window Estimation 

After the features were extracted from the signals, each 

breath had an associated feature vector, x, containing up to 

21 features for this application. To design the classifier, 

Bayes’ rule was used to find the class for a given test feature 

vector that maximized the posterior probability  
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where iω  signifies the ith class. 

A Parzen window classifier is utilized for classification. The 

window type was chosen as a Gaussian radial basis function 

(RBF): 
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where x  is a feature vector extracted from an unknown 

breath, which must be classified, and ix  represents a feature 

vector contained in the training set database. r was 

calculated as the median of the Euclidean distances between 

all feature vectors in the training set. 

 { }21,ΒΒ∈ω  represented the class labels for each of our 

two breath classes. For each breath class, the discriminant 

function was evaluated: 

( ) ( )∑
∈

=
ξ

ω φ
i

ig xx  ,            (3) 

where { }N,...1⊂ξ  is the set of indices of the feature 

vectors in the training set labelled as belonging to classω . 

A classification result, xω , was obtained as: 

( ){ }xx ω
ω

ω gmaxarg= ;     (4) 

that is the class, { }21,ΒΒ∈ω , which maximizes Eq.3. 

F. Feature Subset Selection 

A form of the sequential forward floating search (SFSS) 

algorithm was exploited to identify the feature subset that 

maximizes the classification performance criterion [4], in 

this case the accuracy of breaths correctly classified. Three 

passes of the sequential forward selection (SFS) algorithm 

are made to choose up to the first three features that 

contribute the greatest improvement to performance. A 

backwards pass is then made to check if removing any 

features one at a time improves performance. Forward and 

backwards passes then alternate to add or trim features until 

performance is maximized.  

G. Cross-fold Validation 

To validate the classifier, features from all but one 

patient formed the training data for the classifier, which was 

subsequently tested on features from the withheld patient. 

This procedure of withholding a patient as the test set was 

iterated 23 times. Both the training and test sets were 

normalized on each pass using statistics from the training set. 

Accuracies, sensitivities, specificities, positive and negative 

predictive values and Cohen’s kappa coefficient are 

averaged across all 23 passes for overall unbiased estimate 

of performance. 

TABLE   II. FEATURE LIST 

1 RR breath 

2 RR ratio 

3 IE ratio 

Respiratory Rate 

based features 

4 VolI 

5 VolE 

6 breathLeak 

7 Vol ratio 

Volume based 

features 

8 PEEPii 

9 Ri 

10 Ci 

11 iτ  

12 PEEPie 

13 Re 

14 Ce 

15 eτ  

Respiratory 

Mechanics based 

features 

 

16 InterpMinima 

17 InterpMinima-2/3 

18 PW linear approx power 

19 PW vol deviation 

20 PW dist flow maxmin 

21 PW distance ratio 

Expiratory Flow 

Morphology based 

features 
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III. RESULTS 

Tables III and IV shows the confusion matrix and positive 

predictivity, negative predictivity, sensitivity and specificity 

and Cohen’s κ coefficient results for a comparison between 

the automated classification algorithm and the manually 

annotated data for 5624 breaths. Features selected in order 

were 18, 20, 19, 11 and 21. 

 
 

 

IV. DISCUSSION AND CONCLUSIONS 

A non-invasive and simple method for detecting major 

forms of asynchrony in patient-ventilator interaction has 

been designed and compared to a human expert-based 

classification system using a database of 23 subjects. 

Overall accuracy (94.7%) and specificity (98.7%) of the 

classifier is excellent, whereas the sensitivity (58.7%) is 

moderate. The κ coefficient is a chance-adjusted measure of 

agreement between two raters [5]. The κ obtained (0.66) 

represents a good level of agreement between the systems.  

Possible causes for the lower sensitivity relate to the fact 

that timed pressure support breaths were common in the 

data. In such modes containing these breaths, it is intentional 

that the ventilator ignores normal efforts exerted by the 

patient, preferring to dictate the timing in a metronomic 

fashion. As a result, normal size efforts may influence the 

flow signal producing normal positive swings that are not 

accompanied by pressure support. These efforts, while still 

classed as ineffective, are not the pathological variety that 

are influenced largely by intrinsic PEEP and hyperinflation 

and which preoccupy the main concern of clinicians for 

patients on pressure support ventilation. Pathologic eIEs 

occur with smaller and negative value flow swings relative to 

their timed-mode-induced counterparts. As such the 

combined feature vectors intersect a greater proportion of 

other breath classes. In future, relabeling of this class as two 

subsets may improve the sensitivity of the classifier. Another 

factor influencing the sensitivity is the similar morphology 

between eIEs and early cycling (another asynchrony type): 

both are categorized by a perturbation on the flow signal 

during expiration (and correspondingly on the pressure), 

however they differ by the elapsed time at which they occur 

from the start of expiration. This factor is subject dependent, 

and may be ambiguous even by expert visual inspection. 

General factors limiting classifier performance include 

artifacts such as coughs, swallowing, and abdominal effort, 

as well as incorrect breath labeling brought about by human 

error and ambiguity where the Pdi signal is noisy, exhibits 

large drifts, or where esophageal spasms occur.  

In the authors’ previous work [6], an online algorithm 

was developed to detect the presence of asynchrony. Overall 

performance was very good; however the algorithm 

contained fixed thresholds and a limited featured set. Also a 

greater proportion of the eIEs were induced under timed-

mode as described above due to low prevalence of those 

naturally occurring. Thresholds were tuned accordingly. 

To the authors’ knowledge, only two other attempts to 

automate detection of eIEs exist. In [2], a ‘real’ patient effort 

signal is estimated via optimization of respiratory mechanics 

measures, and eIEs are detected as an increase of this signal 

beyond a fixed threshold without an associated ventilator 

breath. Sensitivity was reported as 79.7%. In [3], a logistic 

regression classifier is used to determine optimal thresholds 

for two morphological features. Maximum sensitivity 

(93.3%) and specificity (92.9%) were high, however as the 

authors acknowledge, their data did not contain certain 

artifacts that increase the probability for misclassification. In 

both studies also, the prevalence of eIEs was much greater 

than in the current study, and chance adjusted performance 

analysis would provide a fairer comparison of algorithms.  

In conclusion, we show that using a pattern classification 

approach to automating the detection of eIEs is feasible and 

with further work to increase the sensitivity of the current 

algorithm, may provide clinical utility for assessing the 

quality of patient-ventilator interaction. 
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TABLE  III. CONFUSION TABLE AND PERFORMANCE RESULTS FOR 

INEFFECTIVE EFFORTS CLASSIFICATION 

 

  Human Expert System 

  eIE Other Total 

Automatic eIE 333 66 399 

Classifier Other 234 4991 5225 

 Total 567 5057 5624 
 

TABLE  IV. CONFUSION TABLE AND PERFORMANCE RESULTS FOR 

INEFFECTIVE EFFORTS CLASSIFICATION 

Measure Mean 

Positive Predictivity 83.5% 

Negative Predictivity 95.5 % 

Sensitivity 58.7% 

Specificity 98.7% 

Cohen’s κ coefficient 0.66 

Overall Accuracy 94.7 % 
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