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Abstract— Quantitative evaluation of respiratory sinus arrhythmia

(RSA) may provide important information in clinical practice of

anesthesia and postoperative care. In this paper, we apply a point

process method to assess dynamic RSA during propofol general

anesthesia. Specifically, an inverse Gaussian probability distribution is

used to model the heartbeat interval, whereas the instantaneous mean

is identified by a linear or bilinear bivariate regression on the previous

R-R intervals and respiratory measures. The estimated second-order

bilinear interaction allows us to evaluate the nonlinear component of

the RSA. The instantaneous RSA gain and phase can be estimated with

an adaptive point process filter. The algorithm’s ability to track non-

stationary dynamics is demonstrated using one clinical recording. Our

proposed statistical indices provide a valuable quantitative assessment

of instantaneous cardiorespiratory control and heart rate variability

(HRV) during general anesthesia.

I. INTRODUCTION

Heart rate variability (HRV), the beat-to-beat variation in heart

rate (HR), is considered to be a reflection of autonomic nervous

system activity. Respiratory sinus arrhythmia (RSA) is thought by

many to reflect the parasympathetic component of the autonomic

nervous system during spontaneous ventilation [1]. HR increases

with inhalation and decreases with exhalation. Therefore, RSA can

be considered to be an important index of vagal control of HR and

an indicator of autonomic nervous system activity processed in the

nucleus solitarius of the brainstem. In clinical practice, RSA has

been shown to be related to clinical signs of depth of anesthesia

and has been proposed to have potential as a diagnostic monitoring

measure for the depth of anesthesia [11], [17], [4] as well as cardiac

or neurologic dysfunction [14], [13]. It was found in animals that

morphine with α-chloralose-urethane significantly increased RSA,

whereas thiopental and halothane both significantly decreased RSA

[12]. Studies on children during the induction of general anesthesia

with halothane and nitrous oxide showed that RSA decreased in a

significant manner, corresponding from awake, to loss of pharyngeal

tone, to stage 3 or deep anesthesia [4].

Quantitive assessment of RSA poses a challenging statistical

signal processing problem in biomedical engineering. In the litera-

ture, time domain-based sequence methods and frequency domain-

based spectral methods have been proposed to evaluate RSA

[10]. However, all of these methods are based on the assumption

that signals are stationary or quasi-stationary within a window.

Previously, we have proposed a point process method to evaluate

instantaneous RSA during a non-stationary environment [5], [7].

Our previous investigation of RSA in a pharmacological blockade
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protocol [7] validated the linear RSA gain estimates and sug-

gested that suppression of parasympathetic activity using atropine

reduces RSA, whereas the blockade of sympathetic activity with

propranolol has little effect on the RSA gain. Here, we extend the

previous model to include a 2nd-order Volterra bilinear expansion to

characterize the nonlinear interaction between heartbeat interval and

respiratory signals for a healthy subject during general anesthesia

[8] where the anesthetic drug propofol was administered with

different concentrations [18]. Our preliminary study provides a first-

hand quantitative assessment of RSA under propofol anesthesia for

healthy subjects using a rigorous statistical estimation method.

II. HEARTBEAT INTERVAL POINT PROCESS MODEL

Given a set of R-wave events {uj}
J
j=1 detected from the elec-

trocardiogram (ECG), let RRj = uj − uj−1 > 0 denote the jth

R-R interval. By treating the R-waves as discrete events, we may

develop a probabilistic point process model in the continuous-time

domain. Assuming history dependence, the waiting time t−uj (as

a continuous random variable) until the next R-wave event can be

modeled by an inverse Gaussian model [2], [3], [5]:

p(t) =
“ θ

2πt3

” 1

2

exp
n

−
θ(t − uj − µRR(t))2

2µ2
t (t − uj)

o

(t > uj),

where uj denotes the previous R-wave event occurred before time t,
θ > 0 denotes the shape parameter, and µRR(t) denotes the instanta-

neous R-R mean. When the mean is much greater than the variance,

the inverse Gaussian can be well approximated by a Gaussian model

with a variance equal to µ3
RR/θ. In point process theory, the inter-

event probability p(t) is related to the conditional intensity function

(CIF) λ(t) by a one-to-one transformation: λ(t) = p(t)

1−
R

t
uj

p(τ)dτ
.

The estimated CIF can be used to evaluate the goodness-of-fit of

the probabilistic heartbeat model.

In modeling the instantaneous R-R interval mean µt, we propose

to use the following two models:

• A linear bivariate autoregressive (AR) model that reflects a

bivariate discrete-time linear system:

µRR(t) = a0(t) +

p
X

i=1

ai(t)RRt−i +

q
X

j=1

bj(t)RPt−j (1)

where the first two terms represent the AR model of the

past R-R intervals (RR), and RPt−j denotes the value of the

respiratory (RP) measure, which is synchronously sampled at

the beats prior to time t.
• A nonlinear bivariate Volterra model that reflects a bivariate

bilinear system:

µRR(t) = a0(t) +

p
X

i=1

ai(t)RRt−i +

q
X

j=1

bj(t)RPt−j

+
r

X

i=1

r
X

j=1

hij(t)(RRt−i −
˙

RR
¸

)RPt−j (2)
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The above two models can be derived within the general framework

of Volterra-Wiener theory in nonlinear system identification [16].

A. Instantaneous Indices of HR and HRV

Heart rate is defined as the reciprocal of the R-R intervals. For

time t measured in seconds, the new variable r = c(t − uj)
−1

(where c = 60 s/min) can be defined in beats per minute (bpm).

By the change-of-variables formula, the HR probability p(r) =
p(c(t− uj)

−1) is given by p(r) =
˛

˛

dt
dr

˛

˛p(t), and the mean and the

standard deviation of HR r can be derived [2]:

µHR = µ̃−1 + θ̃−1, σHR =

q

(2µ̃ + θ̃)/µ̃θ̃2, (3)

where µ̃ = c−1µRR and θ̃ = c−1θ. Essentially, the instantaneous

indices of HR and HRV are characterized by the mean µHR and

standard deviation σHR, respectively.

B. Adaptive Point Process Filtering

Let ξ = [{ai}
p
i=0, {bj}

p
j=1, {hij}, θ]

T denote the vector that

contains all unknown parameters in the probabilistic model, we can

recursively estimate them via adaptive point process filtering [3]:

ξk|k−1 = ξk−1|k−1

Pk|k−1 = Pk−1|k−1 + W

ξk|k = ξk|k−1 + Pk|k−1(∇ log λk)[nk − λk∆]

Pk|k =
h

P−1
k|k−1 + ∇λk∇λT

k

∆

λk

−∇2 log λk[nk − λk∆]
i−1

where P and W denote the parameter and noise covariance matri-

ces, respectively; and ∆=5 ms denotes the time bin size. Diagonal

noise covariance matrix W that determines the level of parameter

fluctuation at the timescale of ∆ can be initialized either empirically

from a random-walk theory or estimated by a maximum likelihood

estimate. Symbols ∇λk = ∂λk

∂ξk
and ∇2λk = ∂2λk

∂ξk∂ξT
k

denote the

first- and second-order partial derivatives of the CIF w.r.t. ξ at time

t = k∆, respectively. The indicator variable nk = 1 if a heart beat

occurs in time ((k − 1)∆, k∆] and 0 otherwise.

C. Quantification of RSA

From equations (1) or (2), we can derive the transfer function

and frequency response between RP (input) and RR (output). Since

the RSA effect is frequency dependent, we propose the following

measure to quantify the RSA in the frequency domain [7]:

H12(f) =

Pq

j=1 bj(k)z−j
˛

˛

z=ej2πf

1 −
Pp

i=1 ai(k)z−i
˛

˛

z=ej2πf

, (4)

where f denote the rate for the RR and RP measurements (the

samples of both series are assumed to be synchronized). With the

estimated time-varying AR coefficients {ai(k)} and {bj(k)} at

time t = k∆, we may evaluate the dynamic frequency response of

(4) at high-frequency (HF) range (0.15-0.5 Hz, which is the range

of respiration rhythm). The RSA gain, characterized by |H12(f)|,
represents the effect of RP on heartbeat. Given the baroreflex gain,

we can estimate the cross-spectrum between RP (u) and RR (y)

as Cuy(f) = H12(f)QRP(f). When the coefficients {ai(t)} and

{bj(t)} are iteratively updated, the point process filter produces an

assessment of instantaneous (parametric) RSA gain, as well as the

cross-spectrum, at a very fine temporal resolution and without using

the window technique.

In addition, in order to characterize the nonlinear coupling

between RP (u) and RR (y) in the frequency domain, we can

compute the cross-bispectrum [8]:

Cuuy(f1, f2, t) = 2H(−f1,−f2)Cuy(f, t)QRR(f2, t) (5)

where H(f1, f2) =
Pq

k=1

Pq

l=1 hkle
−j2kπf1e−j2lπf2 denotes the

Fourier transform of the 2nd-order kernel coefficients {hkl}, and

the instantaneous R-R spectrum is

QRR(f, t) =
σ2

RR(t)

|1 −
Pp

i=1 ai(t)z−i
˛

˛

z=ej2πf

.

Let h(t) denote a vector that contains all of 2nd-order coeffi-

cients {hkl(t)}; in light of (5), we may compute an instantaneous

index that quantifies the fractional contribution between the cross-

spectrum and the cross-bispectrum [8]:

ρt =
|Cuy(f, t)|

|Cuy(f, t)| + |Cuuy(f1, f2, t)|
≈

1

1 + 2|h(t)| · |QRR(f, t)|
,

where | · | denotes either the norm of a vector or the modulus

of a complex variable. The “≈” is due to a Gaussian assumption

used in deriving (5). A small value of ρ implies a presence of

significant (nonzero) values in {hkl} (i.e. nonlinearity), whereas a

perfect linear Gaussian model would imply ρ = 1.

III. EXPERIMENTAL PROTOCOL AND SETUP

The present pilot study and experimental protocol was approved

by the Massachusetts General Hospital (MGH). Any subject whose

medical evaluation was not classified as American Society of

Anesthesiologists Physical Status I was excluded from the study.

Intravenous and arterial lines were placed in each subject. Propofol

was infused intravenously using a previously validated computer-

controlled delivery system running STANPUMP [19] connected to a

Harvard 22 syringe pump (Harvard Apparatus, Holliston, MA). Six

effect-site target concentrations (0-5 mcg/ml) were each maintained

for 15 minutes respectively. Capnography, pulse oximetry, ECG,

and arterial blood pressure (BP) were recorded (at 1 kHz sampling

rate) and monitored continuously by an anesthesiologist throughout

the study. Bag-mask ventilation with 30% oxygen was administered

as needed in the event of propofol-induced apnea. Since propofol

is a potent peripheral vasodilator, phenylephrine was administered

intravenously to maintain mean arterial BP within 20% of the

baseline value [18]. The respiratory signals were simultaneously

sampled and recorded at 1 kHz. The quantitative analysis of the

BP and baroreflex sensitivity has been reported elsewhere [8].

In the present study, as acquisition sessions are still ongoing, we

focus on one specific subject. Figure 1 shows representative R-R

and respiratory recordings from this subject across 6 epochs. Specif-

ically, during the experiment, the phenylephrine was administered

at around 2960 s after the recording onset (which is at the drug

effect-site target concentration of 2 mcg/ml), and it was turned off

at around 7580 s. In addition, hand ventilation started at around

3130 s and ended at around 7555 s.

For the linear model (2), the bivariate orders p and q were

fitted from 2 to 8 and the optimal order was chosen according

to the Akaike information criterion (AIC). For the bilinear model

(3), the order r = 2 was empirically chosen to avoid demanding

computation burden, and the initial hij was estimated by fitting

the residual error via least-squares. After computing the CIF, the

goodness-of-fit of the probabilistic model for the heartbeat interval

is evaluated with the Kolmogorov-Smirnov (KS) test and autocor-

relation independence test [2]. To assess the RSA, we computed

the frequency response (4) within the range of the respiratory

frequency±0.15 Hz. For the majority of epochs, the respiratory

frequency stays around 0.25∼0.3 Hz, which is also the frequency

band in which the RR and BP time series achieved the maximum

coherency. Note that, since the respiratory measures are non-

calibrated, the RSA unit is arbitrary; however, we still can measure
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Fig. 1. Selected snapshots of raw R-R and non-calibrated respiratory (RP, arbitrary unit) recordings from one subject during 5 consecutive epochs (with
gradually increasing levels of drug concentration from 0 to 5 mcg/ml propofol).

TABLE I

COMPARISON OF MEAN STATISTICS AT 6 DIFFERENT LEVELS OF PROPOFOL DRUG CONCENTRATIONS.

µHR (bpm) σHR (bpm) µRR LF/HF RSA gain Coh. (HF) ρ (HF)

level 0 61.23 3.18 0.712 16.85 0.894 0.928

level 1 61.83 2.04 0.517 27.05 0.968 0.961

level 2 64.73 2.29 0.982 19.82 0.906 0.899

level 3 66.90 1.87 0.905 12.51 0.821 0.984

level 4 63.13 2.01 0.876 15.99 0.882 0.964

level 5 61.88 1.36 0.679 10.89 0.925 0.987
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Fig. 2. Two snapshot examples of dynamic tracking (using a linear model)
for instantaneous HR, HRV, and RSA (dashed, dash-dot and solid lines
mark the onset time of propofol anesthesia, phenylephrine, and ventilation,
respectively). The red trace in the top panel shows the observed R-R
intervals, which overlays the µRR in blue trace.

the relative change in RSA as compared to the awake baseline (level

0) for any specific subject.

IV. RESULTS AND DISCUSSION

The main goal of this paper is to demonstrate that our proposed

point process method is well suited for analyzing data from clinical

studies under general anesthesia, and that it provides a valid model

capable of tracking instantaneous HR, HRV, and RSA indices in

a non-stationary environment. The model was validated by well-

established goodness-of-fit tests [3]. Specifically for the considered

subject, the KS plot lies almost entirely within the 95% confidence

bounds; meanwhile, the autocorrelation function has most autocor-

relation lag estimates within the 95% confidence bounds, suggesting

that their transformed times are nearly independent.

During general anesthesia, temporary interventions are required

to stabilize vital signs. Clinical interventions such as phenylephrine

administration and artificial ventilation elicit important transient

responses and recurrent nonstationarities along the experiment.

These kinds of procedures, which are routine in the operating room

environment, require an instantaneous dynamic assessment such as

the one we propose. More clearly, we show two explicit instances

in Fig. 2. In the top panel we are between level 0 and level 1, and

at around 2010 s propofol administration was initiated. Parallel to

a sudden drop in mean RR we observe an increase in variability

accompanied by a drop in RSA. A second sharper drop (both in

mean RR and RSA) occurs 40 s later, then RSA values recover

and stabilize around a lower level than without anesthetic effect.

In the second bottom panel, at around 2960 s, phenylephrine was

administered to restore blood pressure closer to baseline values.

Consequently, a gradual drop in HRV is accompanied by a more

rapid drop in RSA. As values tend to stabilize, hand ventilation was

started at around 3125 s to compensate for a reduced respiration

(see RP trace), eliciting a sudden increase in HRV accompanied by

a sharp decrease in RSA. Note the marked oscillatory variations of

RSA during hand ventilation, which could not have been observed

with stationary window-based estimates. Also note that even in such

a highly non-stationary environment, the overall goodness-of-fit of

our model is still excellent (Fig. 3), although we also observed a

slight mismatch in tracking µRR right after certain transient effects

(e.g., ventilation in Fig. 2).

In Table I, the HR, HRV, LF/HF ratio, RSA gain, and the coher-

ence (around respiration frequency), time-averaged over each 15-

minute propofol level, are reported. Specifically, the time-averaged

HR initially increased up to level 3 and then decreased; the time-

averaged HRV gradually decreased as the drug concentration level

increased; the LF/HF ratio did not correlate with drug level and

showed a maximum during level 3 and a minimum during level

1; and the RSA gain generally showed a decreasing trend from

level 1 to level 5. It should be stressed that these trends were not

statistically significant. Furthermore, transient changes such as the

one observed in our example may significantly affect reliability of

the averaged statistics within the 15-min epochs of interest. In our

case, this issue becomes even more relevant as a consequence of

the transient effects elicited by phenylephrine administration and

hand ventilation (Fig. 2).

Next, we investigate the nonlinear component of the RSA effect.

Our investigation is motivated by a previous study, which suggested

that RSA fluctuations during anesthesia contain nonlinear dynamic

mechanisms [15]. Essentially, an increase/decrease of coherence
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Fig. 3. Goodness-of-fit tests by KS plot and autocorrelation plot. The line
or dots falling within 95% confidence bounds (dashed line) indicate a good
fit of the probability model for heartbeat intervals.

values reflects the increase/decrease of linear dependence in fre-

quency domain between two time series, which is also reflected in

the cross-spectrum/cross-bispectrum ratio ρ.

In Table I, we can see that both the coherence and cross-

spectrum/cross-bispectrum ratio ρ show similar mixed trends across

the different drug levels, suggesting that the degree of RSA non-

linearity is not a function of propofol drug level. It is interesting

to point out that in our previous investigation [8] we observed

an increase of nonlinearity in heartbeat interval dynamics from

baseline to anesthesia, where the nonlinearity involved the bilinear

interactions between RR and systolic blood pressure (SBP) accom-

panied by a significant decrease in linear coherence between these

two series. This seems to suggest that the nonlinear component of

heartbeat interval dynamics during anesthesia is mainly contributed

from the cardiovascular (baroreflex) loop, whereas the linear inter-

action within the cardiorespiratory loop roughly remains unchanged.

It is also possible that the respiratory system indirectly influences

HR by modulating the baroreceptor and chemoreceptor input to

cardiac vagal neurons. However, in our experimental condition, it

is difficult to separate the influence of SBP from the influence of

respiration on HRV.

V. CONCLUSION

We apply and validate a point process method for dynamic

assessment of RSA during propofol general anesthesia. The pro-

posed point process method enables us to simultaneously estimate

instantaneous HR, HRV, cross-spectrum, and cross-bispectrum, all

of which may serve as useful noninvasive indicators in clinical

practice. It should be emphasized that since the 15-min time-

averaged statistics may not give reliable estimates, our main point

in this study is to demonstrate the ability to provide instantaneous

assessments of cardio-respiratory coupling non-stationary events

due to transient interventions as well as sudden changes in physi-

ological state that often occur in the operating room environment.

Overall, our dynamic estimates suggest that (i) RSA gradually

decreases from awake baseline after administration of propofol

anesthesia, although whether the RSA gain may accurately measure

efferent vagal activity is still controversial [9]; (ii) the RSA effect is

suppressed by the phenylephrine; and (iii) the nonlinear interactions

within the cardiorespiratory control remain relatively stable. It is

known that different anesthetic drugs have different impacts on au-

tonomic control and cardiac vagal tone [12]. Complementary to our

previous study [8], it would be interesting to further investigate the

joint interactions between the cardiovascular and cardiorespiratory

couplings and their impact on HRV. Specifically, RSA is likely to be

mediated by phasic withdrawal of vagal efferent activity resulting

from the mechanisms of baroreflex response to spontaneous BP

fluctuations or respiratory gating of central arterial baroreceptor and

chemoreceptor afferent inputs [20].

To conclude, our statistical method and quantitative analysis may

also serve as a potential measure for diagnosis of a variety of car-

diovascular diseases, such as hypertension, myocardial infarction,

and heart failure, all of which typically have abnormal RSA.
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