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Abstract— The aim is to develop a new model of the QT
interval dynamics behavior related to heart rate changes. Since
two kinds of QT response have been pointed out, the main idea
is to split the modeling process into two steps: 1) the modeling
of the “fast” adaptation, which is inspired by the electrical
behavior at the cellular level relative to the electrical restitution
curve, 2) the modeling of the “slow” adaptation, inspired by
experiments works at the cellular level. Both are modeled as
low-complexity autoregressive process whose parameters are
computed using an unbiased estimator. The relevance of this
approach is illustrated on several ECG recordings where the
variations of the heart rate are various (rest, atrial fibrillation
episodes, exercise). Significant results are obtained in agreement
with the physiological knowledge at the cellular level.

I. INTRODUCTION

The cardiac period, associated to the RR interval, is widely

considered as the origin of the QT interval dynamics [1], [2].

However, the QT interval, which corresponds to the period

of ventricular depolarization-repolarization, is mainly influ-

enced by changes in heart rate in addition to the autonomic

nervous activity [3], [4], [5].

The QT interval reflects the overall duration of ventricular

electrical activity, and is often associated in the literature

to the Action Potential Duration (APD) at the cellular level

[6], [7]. Some studies have revealed both a “fast” response,

and a “slow” response in the APD intervals adaptation to

abrupt changes in the cardiac period [8], [9], [10]. As this

phenomenon of double adaptation exists at the cellular level,

it affects naturally the QT interval dynamics at the ECG

level.

The QT response to changes of the heart period was stud-

ied during sudden changes by pacing [8]. It was described

that 90% of QT interval adaptation to abrupt change in

heart rate takes approximatively 2-3 minutes [8]. Considering

the influence of preceding RR intervals, the analysis of the

relationship QT/RR has been widely studied: Porta et al.

[11] have proposed a model to quantify the dependence of

the duration of ventricular repolarization towards the cardiac

period, and considering other factors not directly measurable.

This study is however limited under conditions of rest when

there is no sudden change in heart period, and was taken

over by Almeida et al. [12]. Considering only the stable

heart periods, a different approach was proposed by Badilini

et al. [13]. When RR intervals are changing, different works

suit to this non-stationary case, such as: El Dajani et al.
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[14], who proposed a model based on neural networks,

Larroude et al. [15], who studied the QT interval dynamics

during atrial fibrillation episodes, and Pueyo et al. [16], [17],

who proposed a model of the QT response based on the

average of previous RR intervals. This latter method makes

it possible to adapt a specific model for each subject. Indeed,

the QT/RR relationship being different for each subject [18],

it is important to model this relationship at an individual

basis.

Studying the trends and the variabilities of the QT and the

RR intervals, two kinds of QT response to the heart period

changes are pointed out [7], [8], [9]: a “fast” phase, which

occurs following few heart beats, and a “slower” phase,

which occurs following a longer period. However, no study in

the literature focus on these two adaptation phases in parallel.

Most of them propose a modeling of the “slower” phase by

characterizing the evolution of the QT intervals trend.

Therefore, a new modeling of the QT interval dynamics

behavior related to the RR one is proposed in this paper.

The QT interval dynamics are considered as a weighted sum

of two contributions: a fast and a slow adaptation. Both are

modeled as a low-complexity autoregressive process, with

unknown initial conditions, whose parameters are calculated

with an unbiased estimator.

The remainder of the paper is organized as follows.

Section II deals with the proposed modeling of the QT

adaptations. In Section III, the relevance of this new mod-

eling is illustrated on several real ECG recordings where

the variations of the RR-trend and the RR-variability are

various: i) resting conditions, ii) atrial fibrillation episodes,

iii) exercise conditions. Significant results are obtained in

agreement with the physiological knowledge at the cellular

level. Finally, a conclusion is made and some perspectives

are suggested in Section IV.

II. METHOD

The QT interval response to heart period changes can be

considered as a weighted sum of two contributions [9]:

• a “fast” adaptation, which focuses on the variability of

QT and RR intervals,

• a “slow” adaptation, which focuses on the trend of QT

and RR intervals.

The “fast” adaptation can be seen as the response to the

sum of action potential of ventricular cells. So, it is closely

related to the electrical restitution curve at the cellular level,

which shows the positive relationship between the Action

Potential Duration (APD) and the Diastolic Interval (DI) [9],

[19]. The QT interval (or RT interval up to a constant) and
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Fig. 1. Restitution curve at ECG level: analogy between the relationship
“Action Potential Duration vs Diastolic Interval” at the cellular level, and
the relationship “RT vs TR intervals” at ECG level.
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Beat n Beat n+1

Fig. 2. Schematic representation of normal sinus rhythm showing standard
waves and definition of the RR, RT and TR intervals on two consecutive
cardiac beats.

the TR interval of ECG can be respectively associated to the

APD interval and the DI interval at the cellular level [6], [7].

Then, the relationship between RT and TR can be represented

by a restitution curve at the ECG level as in Figure 1. The

definition of the notations of the intervals RTn+1, T Rn. . . , is

presented in Figure 2. By using the restitution curve (Figure

1), it is graphically possible to put in relation the RT intervals

and the cardiac period (RR intervals). Then, according to the

definition of the cardiac intervals in Figure 2, we have:

RRn+1 = RTn+1 + TRn+1, (1)

or, RTn+1 = RRn+1 −TRn+1. (2)

For a constant heart period, i.e., a fixed RR interval, there

is equality between the intervals T Rn and T Rn+1. In this

case, we can write the equation (2) as follows:

RTn+1 = RR−TRn. (3)

This latter relationship is represented in Figure 1 by the

diagonal lines. The intersection of these lines with the resti-

tution curve defined by RTn+1 = g(T Rn) corresponds to the

balance point for a fixed RR. We notice that from this balance

point, by increasing the heart period (RR increases), the new

balance point will be reached quickly, whereas by decreasing

the heart period, the new balance point will be reached much

more slowly since the slope of the restitution curve is greater

for weak RR interval. Also, it is worth noting that if the slope

of the restitution curve is greater than 1, there is theoretical

instability. However, the minimal and maximal physiological

values of the restitution curve are bounded by nature, there

will be emergence of a limit cycle generating alternans. In

case of a balance point existence (slope sufficiently low), it

is possible to make a linear approximation of the restitution

curve. It is assumed around the balance point that:

RTn+1 = aT Rn + b,with a > 0. (4)

By developing this expression, we obtain a relationship

between the “fast” adaptation of the RT (or QT) intervals

noted RTf ( f for “fast”) and preceding RR intervals:

RTf n+1
= aRRn −a2RRn−1 + a3RRn−2 + . . .

+ b−ab + a2b−a3b + . . . ,
(5)

or in recursive form,

RTf n+1
= −aRTf n

+ aRRn + b. (6)

Neglecting the parameter b in a first step, the filter

following the relationship (6) is a high-pass filter of the form:

RTf(z) =
a

a + z
RR(z). (7)

Considering the input RR(z) as a step function, the step

response of the filter is:

RTf(z) =
az

(a + z)(z−1)
=

α

(a + z)
+

β

(z−1)
, (8)

where the first term of the decomposition, α
(a+z) , stands for

an “oscillating part” , and the second term corresponds to a

shifted step function.

Focusing only on the “oscillating part” of RTf , which

can be associated to the variability of the RT intervals, and

noted RTh f (h f for “high frequency”), we are looking for

the transfer function which links the RTh f and the RR, such

as when the input is a step function, the output is oscillating:

RThf(z) =
α(z−1)

z(a + z)
RR(z). (9)

By proposing the previous relationship (9), it is clear that for

a step input, i.e., RR(z) = z
z−1

, then RThf(z) corresponds

to the oscillating part in (8). From this relationship, the

recursive form is deduced:

RTh f n+1
= −aRTh f n

+ αRRn −αRRn−1, (10)

where the term αRRn −αRRn−1 can be seen as a derivative,

and can be replaced by γRRh f , where RRh f is the variability

of the RR intervals.

Finally, the “fast” adaptation of the RT (or QT) response

to RR changes can be split up into:

• an “oscillating part” defined by the relation:

RTh f n+1
= −aRTh f n

+ γRRh f n
, (11)

with a small and positive.
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• a shifted step function.

In a first time, only the “oscillating part” R̂T h f is estimated

by a least squares method thanks to the observation of the

variabilities of the estimated RT and the RR intervals.

The shifted step function will be integrated in the estima-

tion process of the “slow” adaptation which is about the trend

of the RT intervals, noted RTl f (lf for “low frequency”). This

“slow” adaptation can be considered as a low-pass filtering

of the preceding RR intervals:

RTl f n+1
= cRTl f n

+(1− c)RRn, (12)

with c less than, but close to 1. This modeling allows to get a

“slow” step response similar to the one obtained in the work

of Franz et al. at the cellular level [9].

After removing the previously estimated “oscillating” part

away from the RT intervals, the coefficients relative to

the equation (12) and to the residual shifted step function

are estimated. Finally, to construct the entire signal, the

estimated “oscillating part” of the “fast” adaptation, and the

estimated “slow” adaptation should be added.

In conclusion, in order to model the QT adaptation to RR

changes, the estimation process is split in two steps:

• the “oscillating part” of the “fast” adaptation, looking

at the variabilities of QT and RR intervals;

• the “slow” adaptation and the shifted step function of

the “fast” adaptation, looking at the trends of QT and

RR intervals.

III. RESULTS

The proposed modeling of the “fast” and “slow” QT

adaptations to heart rate changes is applied to real ECG.

First of all, a pre-processing method based on a threshold

technique applied to the high-pass filtered and demodulated

ECG provides us an accurate estimation of the RR intervals

[20]. The QT intervals are estimated using the Improved

Woody’s method developed in [21]. The trends of QT and RR

intervals are computed using a MA filtering with a hamming

window of 25 beats, and the variabilities of the QT and RR

intervals are calculated by substraction of the trends to the

considered intervals.

The modeling of the QT adaptation presented in Section

II is applied to:

• ECG recorded at rest (see Figure 3), where the trend of

the QT intervals is well modeled, whereas the variability

of the modeled QT tends to the variability of the

observed one (Mean Square Error (MSE) = 0.79);

• ECG recorded during atrial fibrillation episodes (see

Figure 4), where the trend and the variability of the

modeled QT are very close to those of the observed

ones (MSE = 7.24);

• ECG recorded during rest and exercise on a cyclo-

ergometer (see Figure 5), where we observe a large error

of modeling when the exercise begins. This modeling

error is due to the sudden and significant drop of the

RR intervals at the beginning of the exercise (MSE

= 13.86).

In case of a sudden change of the heart rate as in exercise, a

piecewise modeling process is proposed. The ECG recorded

in exercise is split into two parts: the rest (from the beginning

of the record until the 420th beat in this example) and the

exercise (after the 450th beat to the end). The zone between

the 420th and the 450th beat is excluded according to the

model transition. The result of this piecewise QT adaptation

modeling is presented in Figure 6. The MSE of the modeling

which was equal to 13.86 considering the whole ECG, is

reduced to 5.46. On this example, we observe, in particular

in the exercise phase, that the variability of the QT is better

preserved. Note that the estimation of the parameter a relative

to the “oscillating part” in equation (11) is larger for the

exercise than for the resting phase. This observation has been

checked on others subjects not provided here.

According to these results, we observe that the values

of the slope a are consistent with the average QT values.

This observation is totally consistent with the analysis of

the restitution curve at the ECG level in Figure 1: the slope

a of the restitution curve is more important when the RR

intervals decrease as during exercise.

IV. CONCLUSIONS AND FUTURE WORKS

The problem of modeling the QT adaptation to heart rate

changes is considered. Contrary to the previous studies, the

modeling focuses both on the “fast” and “slow” QT intervals

adaptations. Then, a new modeling based on two processes is

proposed: at first the “oscillating part” relative to the QT and

RR variabilities, and secondly the “slow” adaptation relative

to the QT and RR trends, are modeled. The proposed “fast”

adaptation modeling is based on the electrical behavior at

the cellular level relative to the electrical restitution curve.

In parallel, the “slow” adaptation modeling is inspired by

experiments works at the cellular level too.

The results on real ECG recordings in Section III illustrate

the feasibility of the modeling of the QT adaptation to

heart rate changes. Excepted in case of an abrupt change of

the heart rate as in the beginning of exercise for instance,

the modeling of both trend and variability of QT intervals

are satisfactory according to the applications. In case of

large changes in the heart rate, a piecewise modeling

process is proposed assuming two stationary intervals in the

cardiac period. Future works can tackle this issue: instead

of considering the parameter a relative to the “oscillating

part” as constant, it would be interesting to consider it

time-variant. With this new adaptive parameter an, the

modeling of the QT adaptation will be more accurate, in

particular the variability.
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Fig. 3. Example of modeling of the QT adaptation to RR changes on a
ECG recorded at rest. MSE = 0.79.
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Fig. 4. Example of modeling of the QT adaptation to RR changes on a
ECG recorded during atrial fibrillation episodes. Note that the trend and the
variability of the modeled QT are very close to those of the observed ones.
MSE = 7.24.

0 100 200 300 400 500 600 700
220

240

260

280

Beat number

Q
T

 i
n

te
rv

a
ls

 (
m

s
)

observed QT

modeled QT

a = 0,061

Fig. 5. Example of modeling of the QT adaptation to RR changes on a
ECG recorded during exercise. We observe that the modeled QT can not
really reach the observed one when the RR drop is too large in the beginning
of the exercise for instance. MSE = 13.86.
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