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Abstract— The nematode Caenorhabditis elegans (C. elegans)
is a widely used model organism in biological investigations.
Due to its well-known and invariant cell lineage tree, it can
be used to study the effects of mutations and various disease
processes. Effective and efficient analysis of the wealth of
time-lapse fluorescence microscopy image data acquired in
such studies requires automation of the cell segmentation and
tracking tasks involved. This is hampered by many factors,
including autofluorescence effects, low and uneven contrast
throughout the images, high noise levels, large numbers of
possibly simultaneous cell divisions, and touching or clustering
cells. In this paper, we present a new algorithm for segmentation
and tracking of cells in C. elegans embryogenesis image data.
It is based on the model evolution framework for image
segmentation and uses a novel multi-object tracking scheme
based on energy minimization via graph cuts. Preliminary
experiments on publicly available test data demonstrate the
potential of the algorithm compared to existing approaches.

I. INTRODUCTION

The nematode C. elegans is one of the most widely used
model organisms in molecular and developmental biology. Its
development from a single cell to the full-grown organism
built of 959 somatic cells is well studied and completely
invariant [1]. This offers excellent possibilities for biological
research on cell differentiation and related subjects. The lat-
est advances in microscopy technique greatly facilitate such
research by providing imaging data of sufficient temporal
and spatial resolution. However, analysis of such data also
requires specialized segmentation and tracking tools that can
cope with the high complexity of the data.

A. Imaging C. elegans Embryogenesis

Following the development of a C. elegans embryo
throughout time by means of a microscope poses several
challenges for both imaging and subsequent image analysis.
Differential interference contrast (DIC) and fluorescence
microscopy are two main imaging modalities that have been
used in this context. Existing nuclei tracking algorithms in
4D Nomarski DIC image sequences [2] are based on distin-
guishing difference in texture between nuclei and cytoplasm.
Besides being sensitive to noise, this method experiences
difficulties in handling cell division events [1] where the
daughter cells appear as very small objects, limiting the
tracking to the 24-cell stage. Segmentation and tracking
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algorithms have recently been applied more successfully in
fluorescence microscopy [1]. Despite the several disadvan-
tages (discussed below), it provides good visualization of a
developing C. elegans embryo during at least a 6-hour period
with a time sampling rate of 1 image per minute, which is
sufficient to properly capture all relevant motions.

B. Previous Work on Segmentation and Tracking

Segmentation of C. elegans nuclei from fluorescence mi-
croscopy images is a highly complicated problem. First,
since a living organism is being imaged, autofluorescence
is prominent, resulting in the presence of disturbing back-
ground structures. Second, lowering the exposure times to
allow tracking the embryogenesis over longer time periods,
results in low contrast and high noise levels. Third, the
limited depth penetration causes a large difference in contrast
between nuclei situated close to the surface and those deeper
in the embryo. Fourth, though most of the time a nucleus
appears in the image as a homogeneously stained sphere,
the nuclei shapes and intensity patterns may sometimes be
rather irregular, especially during cell division. Fifth, at later
stages of C. elegans development, nuclei tend to cluster
together, and the boundary between touching cells is not
always clearly visible in the images. Sixth, this effect is
made worse by the fact that the depth resolution is often
much smaller than the in-plane resolution, which hampers
accurate detection of two touching cells as two separate
objects, and may lead to undersegmentation. In many cases,
the use of temporal information is the only possibility to
segment clustered cells correctly. Seventh, a large number
of cell divisions may occur nearly simultaneously, making it
difficult to properly connect mother and daughter cells.

So far, few attempts have been made to perform auto-
mated segmentation and tracking of fluorescence microscopy
C. elegans data. In [3], a 3D watershed segmentation algo-
rithm is presented. Using a watershed-based framework re-
quires a substantial postprocessing step for combining over-
segmented regions together and splitting undersegmented
clusters. The framework for segmenting three-dimensional
C. elegans data via gradient flow [4] is able to produce
good quality segmentation of highly clustered nuclei. Finally,
in [1] an algorithm for automated cell lineage tracing is
presented. This algorithm uses a data preprocessing step,
followed by nuclei detection and linking, and is capable of
tracking cell nuclei of a developing C. elegans embryo until
the 350-cell stage with reasonable quality. However, after the
194-cell stage, when cells become more clustered, the overall
performance of this algorithm significantly drops. A program
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(StarryNite [5]) implementing the mentioned algorithm and
a tool (AceTree) for analysis and editing of its results are
publicly available online [1].

C. Our Algorithm

Here we present a new algorithm for tracking C. elegans
embryogenesis data obtained by fluorescence microscopy
imaging. The algorithm is based on the model evolution
framework, the key idea of which is that segmentation and
tracking of objects are performed simultaneously. The main
advantage of this is that information about the state of an
object at a previous time point can be incorporated in the
detection and segmentation of the same object in the next
time point. This greatly facilitates segmentation and tracking
of clustered nuclei. In addition, we introduce a novel multi-
object tracking scheme based on energy minimization via
graph cuts, which turns out to be very efficient and effec-
tive for the considered application. To our knowledge, this
algorithm is the first application of model-based approach
for tracking embryogenesis and the first method to perform
both segmentation and tracking on C. elegans fluorescence
microscopy image sequences.

II. MODEL-BASED TRACKING

As a starting point we use our cell tracking algorithm
presented earlier [6], and the coupled active surfaces frame-
work [7]. The main idea behind tracking objects within
this framework is that each object is represented by one
active contour (level set in our case). The evolution of each
active contour is performed via energy minimization, where
the energy consists of both data-based and regularity-based
terms. After the optimal solution for the current frame is
obtained, the set of the active contours is updated: new
contours are created for divided cells or cells that entered
the frame, and contours corresponding to the cells that died
or left the frame are removed from the set. Tracking on the
next frame starts from the final position on the previous one.

To apply the algorithm to C. elegans data, we need to
introduce several modifications. The main point that makes
the algorithm in [6] not practically suitable for tracking this
kind of data is that it is rather computationally expensive,
with computational load proportional to the total number of
objects being tracked. Even though real-time performance
is not required, the long time required for the algorithm to
process the whole data set strongly limits the possibility to
perform efficient research. The second major disadvantage
of tracking C. elegans data by the level-set based algorithm
is that level sets are known to have difficulty splitting closely
positioned but already separated cells just after division.
As a result, if a level set function corresponding to a
mitotic cell encounters such situation, the division event
might be detected later than it happened in reality. In order
to overcome the mentioned difficulties we suggest using a
different energy minimization algorithm: instead of level sets
we use the graph-cut technique [8].

A. Graph-Cut Based Energy Minimization

Graph cuts recently became a popular energy minimization
framework and were successfully applied to various com-
puter vision problems. However, graph-cut based tracking
applications (especially for multi-object tracking) are still
rare due to the global nature of this technique [9]. Here we
resolve this problem in a similar manner to narrow-banded
level-set evolution, where, instead of performing the gradient
descent within the narrow band around the current region
occupied by the object, we apply within that narrow band
graph-cut energy minimization on the following function

E =
∑

p∈Nb

Rp(fp) + α
∑

p,q∈N;
fp 6=fq

Bp,q(fp, fq). (1)

Here p and q are voxels in the narrow band Nb, N is the
set of neighbor pairings, and α is the scalar that controls
the smoothness of the detected boundary of the object.
The region energy term Rp is set to the difference between
the probabilities of a voxel x to belong to the foreground or
to the background

Rp(f) = − ln p(I|foreground) + ln p(I|background). (2)

Here we have chosen to use the non-parametric probability
density function p(x), which is calculated from the smoothed
histogram of the image intensity I(x) within the correspond-
ing region. The boundary term Bp,q we set to be the function
of image contrast in the form

Bp,q(fp, fq) = exp
(
−‖Ip − Iq‖

2

2σ2

)
1

‖p− q‖
, (3)

where the parameter σ can be calculated from the data [9]
or set empirically.

This approach enables multi-object tracking, since the
energy minimization is performed only in the vicinity of the
current position of the object, which allows to detect and
resolve possible collisions between objects. Moreover, since
level sets are no longer used, there is no need to perform
costly re-initializations. Thus we can represent each object
by a binary mask, which greatly reduces the computational
load of the algorithm.

B. General Algorithm Flow

Our algorithm begins tracking with processing of the first
image stack. It is performed in two steps: first an initial
segmentation is obtained via the non-PDE based energy
minimization method [10] and after that the segmentation
result is refined by using the graph cut energy minimization
described in the previous section. Next, the obtained solution
is split into connected components representing separate
objects. In such a way each of the detected nuclei are
represented by two attributes: a binary mask for occupied
region and a characteristic label.

The tracking on each time point starts from the solution
obtained for the previous time point. The minimization of (1)
is performed within a narrow band around the current object
position. Next, voxels that appear to be part of the foreground
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as a result of the energy minimization are included in the
object’s region, and those of the background are removed.
This process is repeated until the number of voxels that
changed sign after one step does not exceed a given value,
or until the maximum number of iterations is reached.

As mentioned, such local update of the region representing
an object being tracked helps to detect situations when
two objects come close to each other. In such case, if
proper measures are not taken, the region corresponding to
one object might also capture the neighboring one. In our
algorithm the non-empty intersection of two different narrow
bands is the indicator of such situations. For separation of
such objects we apply the Radon-transform based scheme
described in detail in [6].

After reaching the final segmentation of the image stack
at the current time point, we perform the necessary actions:
create new labeled regions in case cell division took place
and remove the labels in case the track of some of the nuclei
is lost. An additional postprocessing step can be used here
if recovery of the lost cells is necessary (in a manner similar
to the one described in [6]).

III. RESULTS

We tested our algorithm on the part (covering from
4- to 180-cell stages) of the C. elegans embryogenesis image
sequence described in [1]. The whole image sequence was
downsampled to reduce the size of each image twice in each
dimension in order to speed up computations and to remove
the line skipping artifacts. Beside that no other image prepro-
cessing was used. The result of the segmentation of the image
sequence from [1] is shown in Fig. 1. The figure clearly
shows that our method provides good quality segmentation
of all 180 nuclei present at that time point even in the noisy
images with strong background structures.

Quantitatively the tracking performance of our algorithm
can be summarized as in Table I. For convenience of compar-
ison of both methods we used the same evaluation measures
as in [1]. Notice, that since the exact values for the method
of Bao et al. are not provided in the article, we estimated
them approximately from the corresponding columns of the
error plots. The results above clearly indicate the superiority
of our method for tracking on the described data sequence,
especially for the 4–51-cell and 51–102-cell stages. All the
objects present on the image at the time points corresponding
to those stages were properly identified, resulting in the
absence of detection errors. Our algorithm also exhibits very
good performance with respect to tracking cell divisions.
The polar body, which was detected and tracked during a
number of time steps, and then again fell below the object
size threshold, was the cause of the only false division that
happened. Notice, that the polar body is not included in
further analysis because its presence or absence had minor
influence on the rest of the results, and consequently it can
be easily added to or removed from the tracking results
manually. The number of missed cell divisions for both
4–51-cell and 51–102-cell stages was equal to one, and
in both cases the daughter cells where properly recovered

by the postprocessing detection step. At later time points
(corresponding to the 102–180-cells stage) the quality of
results of our algorithm decreases, though still remaining
better than the one of the algorithm of Bao et al. at this
stage. Such change of performance can be explained by the
large increase of the number of nuclei being tracked as well
as nuclei clustering.

The algorithm was programmed in the Matlab version
R14. Processing times ranged from less than 1 minute for
the first image stack to about 20 minutes for the last one due
to the increase of the number of objects being tracked.

IV. DISCUSSION AND FUTURE WORKS

Results described in the previous section clearly show the
potential of our method and its advantage over the method
currently used for tracking C. elegans embryogenesis imaged
by means of fluorescence microscopy. Our tracking algorithm
implements combined segmentation and tracking, which al-
lows to incorporate prior temporal information into the seg-
mentation algorithm. The latter greatly improves detection
of separate objects in clustered environments. Another major
advantage of our approach in comparison with the state-of-
the-art method [1] is that it detects the real boundaries of
each nucleus instead of approximating its shape by a sphere.
In this way we obtain much more information about the real
state of the system. Unlike the scheme in [1], where the
probability of cell division increased with time, our scheme
for detection of mitotic cells relies only on the shape and
intensity information. Thus our algorithm is more suitable for
performing tracking on mutated C. elegans embryos, where
cell divisions do not necessarily have to be bound to happen
with certain periodicity. Finally, our method is simple in use:
it contains a minimal number of parameters, each of which
is easy to choose because it has clear physical meaning.
Important is that these parameters are not dependent on time.

Using graph-cut based energy minimization has several
advantages over using the active contour framework. First, it
is faster because it does not require performing time-costly
procedures like re-initialization, calculation of generalized
Heaviside function, curvature, etc. Second, it is binary, thus
very efficient with respect to memory consumption. Third,
energy minimization via graph cuts is known to find the
global energy minimum, which is very helpful for proper
detection of mitotic events.

In the future our algorithm will be tested on more data,
especially including later time points, with larger number
of objects being tracked and where nuclei have smaller size
and cluster together. In order to increase the robustness of
our algorithm on such data we are planning to implement
a postprocessing step that includes possible splitting of
undersegmented cells. Also it is necessary to incorporate in
our algorithm a scheme for automatic distinguishing between
a nuclei of a small size and the polar body. Finally, a good
method for preprocessing the data (noise and background
removal) can significantly further improve the performance
and robustness of our algorithm.
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Fig. 1. Example of cell segmentation and tracking in the C. elegans embryogenesis image sequence from [1]. The images are 9 slices out of 35 slices
for the image stack corresponding to the 180-cell stage. The white contours overlaid on the image show the results of the model-evolution based cell
segmentation and tracking algorithm proposed in this paper.

TABLE I
TRACKING PERFORMANCE OF OUR ALGORITHM IN COMPARISON TO THE ALGORITHM OF BAO ET AL. [1].

Feature False Negative (per 1000 nuclei) False Positive (per 1000 nuclei) Error per Division
Cell stage 4–51 51–102 102–180 4–51 51–102 102–180 4–51 51–102 102–180
Our method 0 0 2.0 0 0 2.3 0.02 0.02 0.06
Bao et al. ∼ 0 – 10 ∼ 0 – 4 ∼ 0 – 8 ∼ 0 – 15 ∼ 0 – 5 ∼ 0 – 7 ∼ 0 – 0.14 ∼ 0 – 0.15 ∼ 0 – 0.08
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