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Abstract— Breast Thermography is one of the scanning
techniques used for breast cancer detection. Looking at breast
thermal image it is difficult to interpret parameters of tumor
such as depth, size and location which are useful for diagnosis
and treatment of breast cancer. In our previous work (ITBIC)
we proposed a framework for estimation of tumor size using
clever algorithms and the radiative heat transfer model. In
this paper, we expand it to incorporate the more realistic
Pennes bio-heat transfer model and Markov Chain Monte Carlo
(MCMC) method, and analyze it’s performance in terms of
computational speed, accuracy, robustness against noisy inputs,
ability to make use of prior information and ability to estimate
multiple parameters simultaneously. We discuss the influence
of various parameters used in its implementation. We apply
this method on clinical data and extract reliable results for the
first time using breast thermography.

I. INTRODUCTION

A non-invasive, non-ionizing & inexpensive screening
technique for checkups at regular intervals, facilitating early
detection and possible cure is suitable for Breast cancer.
Breast Thermography, one such scanning technique gives the
surface temperature of the body part being scanned. Tumor is
a mass of cancerous cells having higher metabolic rate; hence
surface temperature of the skin regions closer to the tumor
will be higher than the normal skin surface. In effect, a tumor
can be modelled as a heat source embedded inside human
tissue. Surface temperature of the skin affected by tumor or
heat source can be used for extraction of tumor parameters -
depth, size and location. Finding parameters of a heat source
embedded inside tissue, using surface temperature data is a
challenging “ill-posed” inverse problem [4].

In our previous work we proposed a framework called In-
frared Thermography Based Image Construction for Biomed-
ical applications (ITBIC) [11] to approximate the size of
the tumor by observing contour formations on the image.
It was intended as an adhoc, but clever and quick tool
for practitioners, and was lacking robustness in terms of
accuracy and a sound theoretical basis, with reference to
the forward model. The tumor was modeled as a 2-D disc
passing heat through radiation only. Currently we model the
tumor as a 3-D sphere within a cubical block of tissue.
Heat transfer process within the human tissue is modeled
using Pennes Bio-Heat transfer equation [1]. Construction
of Temperature field from the heat source within the tissue
affected by heat source is shown in [2], [4]. The inverse
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problem of estimating radius of the sphere and location
within the cube from the surface temperatures is generally
very complicated. Finite Element [5], [10] methods have
been previously applied for extraction of tumor parameters.
Li et al [8] have proposed that the Monte Carlo method can
be applied to solve the inverse problem of bio-heat transfer.

Moving toward the holistic ITBIC framework, we have
applied the MCMC method to estimate the tumor parameters
with the more realistic forward model described above. We
have established this method’s feasibility to inverse bio-heat
transfer problems. Our method surpassed all previously used
methods in tumor parameter estimation [5], [8], [10] in terms
of accuracy and speed. It is computationally feasible as it
takes a few 15 mins on an Intel P4 3.0 GHz machine,
hence can be used by hospitals across the world. Some
other advantages of this method are (a) it is robust against
noisy temperature measurements (b) it not only gives a point
estimate but also a measure of the uncertainty in our estimate
(c) it provides a systematic approach to making use of the
available prior information from experience or the patient’s
inputs. We apply our algorithm on actual clinical data and
subject it to verification.

In section II we introduce the MCMC method in the
context of Bayesian inferencing and explain our implemen-
tation. In section III we review estimation results of a single
parameter, the size of the tumor. We analyze the performance
with various metrics including uncertainty in output, output
deviation from actual value etc., and discuss some aspects
in its implementation. In section IV we discuss the results
obtained in the extraction of multiple parameters namely tu-
mor size and location. In section V we discuss the parameter
estimation from clinical data. We submit our conclusions and
discuss avenues for future research in section VI.

II. THE MCMC METHOD & THE FORWARD PROBLEM

The MCMC method and Bayesian inferencing have been
described in this section. First, we define the forward prob-
lem, and explain the sampling and the algorithm.

A. Forward problem

The forward model has been framed using the Pennes Bio-
heat transfer equation (1) for steady state heat flow within
the tissue assuming conduction, convection and metabolic
heat generation of tumorous tissue. Table I gives the values
of the parameters of (1). COMSOL [7] software was used
for simulation. The mesh had around 3500 base points
and 20000 tetrahedral elements with other parameters like
element quality and volume ratio up to accepted standards.
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TABLE I
PENNES EQUATION PARAMETERS

Parameter name Symbol Tissue Tumor
Thermal conductivity (W/m) k 0.42 0.42
Blood perfusion rate (l/s) ωb 18e−8 9e−6

Density (kg/m3) ρb 920 920
Specific heat of blood (J/kg.K) cb 3000 3000
Arterial blood temperature (K) Tb 310 310
Metabolic heat generation rate (W/m3) Qmet 450 29000

Let x be the input vector, and T be the output. We can assume
the forward model to be the function F , where the output is a
set of temperatures corresponding to predetermined positions
on the surface of the tissue. We have, T = F(x).

k
(

δ 2T
δx2 +

δ 2T
δy2 +

δ 2T
δ z2

)
+ωbρbcb(Tb−T )+Qmet = 0 (1)

B. Bayesian inferencing

Bayes’ conditional probability equation that relates exper-
imental data T and parameter x is as follows:

P(x|T ) =
P(T |x)P(x)

P(T )
(2)

P(x|T) is posterior probability density function (PPDF), P(x)
is the prior distribution function, P(T) is a normalizing
constant, P(T|x) is the likelihood function, given by,

P(T |x) =
1

(
√

2πσ)n
exp

(
− (Tmeas−F(x))

′
(Tmeas−F(x))

2σ2

)
(3)

Tmeas refers to the vector of measured temperature values
of dimension n and σ is described later. Parameters are
estimated from posterior distribution as:
(a) Maximum a Posteriori (MAP) x̂MAP = arg maxx(P(x|T ))
(b) Mean estimate x̂MEAN = E(P(x|T ))

C. Sampling

PPDF is usually of a non-standard form, so numeri-
cal sampling becomes necessary. Metropolis-Hastings (MH)
sampling algorithm[9] used has been explained below:

1. Initialize x0
2. for i = 1 to N

a. Draw a sample u ∼U(0,1)
b. Draw a sample x∗ ∼ q(x∗|xi)
c. If u < A(x∗,xi) xi+1 = x∗

d. else xi+1 = xi

Where N is the total number of samples, u is a random
number generated from the standard uniform distribution
U(0,1), q(x∗|xi) is proposal density function given as the
probability of drawing x∗ from a sample distribution of
N(xi,σ) where σ is 5% of xi and A is the acceptance ratio
defined as A(x∗,xi) = min{1, p(x∗).q(xi|x∗)

p(xi).q(x∗|xi)
}. For more details

on the above concepts, see [8], [9].

III. SINGLE PARAMETER ESTIMATION

We considered the tissue to be a homogeneous cube of size
0.072 m ×0.072 m ×0.072 m with an embedded spherical
tumor placed at the it’s center. An overview of the system is
given in Fig. 1. The forward function F used in the MH block
is the one described in section II-A where T is a mesh of
5×5 measurements spread uniformly across the top surface
of the cube. Tmeas was calculated as r = ract in the above
model. In this section we analyse implementation and results
of Single Parameter estimation in detail.

A. The algorithm output

The algorithm is given a seed value r0, our guess at the
radius. The output is a set of N samples of the radius value,
which is expected to converge to the actual value i.e. after
a certain number of iterations, the xi settle down around
ract , which is actual tumor radius. The randomwalk nature
of the samples has been shown in Fig. 2. We measure the
accuracy of the output in terms of the Standard Deviation
(SD) of the resulting distribution of samples. The Burn in
is the number of iterations the algorithm takes to get close
enough to the actual value. The MAP described in section
II-B is also used as a metric. Table II shows some estimated
tumor radii against corresponding actual radius.

B. Performance against the various parameters

In this section, we describe the influence of implicit
MCMC parameters on the performance of the algorithm and
provide insight on their selection and usage.

1) Parameter σins: σins refers to the σ mentioned in
(3). Table III that the optimal result in terms of SD metric
is when σins is 0.15. Although the Burn in fluctuates for
various values of σins, we notice that for very low values, the
randomwalk is too confined and gets lost, while, for a slightly

Fig. 1. Block diagram of overall system implementation

TABLE II
PERFORMANCE OF ALGORITHM USING N=100, r0 = 0.005m, σins=0.15

Actual Tumor Estimated Tumor SD of
radius (m) radius (m) output

0.0050 0.0050 0.0006
0.0075 0.0075 0.0005
0.0100 0.0100 0.0016
0.0125 0.0127 0.0018
0.0150 0.0150 0.0019
0.0175 0.0175 0.0029
0.0200 0.0202 0.0030
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Fig. 2. Randomwalk for the case ract = 0.01m, r0 = 0.005m, σins = 0.2,
N=100, rMAP = 0.01m, SD= 0.0010, Burn in=10

larger value, it is quite streamlined and accurate. However,
it loses focus and delays reaching the actual value as the
σins increases beyond a point. In conclusion, for the range
of measurements taken by contemporary thermography, σins
is recommended to be around 0.15.

2) Influence of initial value: The choice of the initial
value is a tough one. As would be expected, the closer the
initial value would be to the actual value of the radius, the
better are the results. Here, we show that although the results
are affected by initial value that is very far away from the
actual value, the results are still within acceptable accuracy
for unfairly faulty choice of initial value, in the context of
breast thermography. Variation of SD and Burn in, against
r0, which are the measure of accuracy and computation time
are shown graphically in Fig. 3 respectively.

3) Error in measurement (ξ ): Our model also accounts
for the possibility of error in the measured values of the
temperatures. We measure the performance of the algorithm
against measurement error(ξ ) quantified as the standard
deviation of the Gaussian noise added to the model output
simulated with ract , to give Tmeas. Fig. 4 shows the algorithm
is robust for unusually large amounts of error, of the order
0.5◦C.

4) Mesh Accuracy: We subject different meshing sizes
to tissue cube and tumor, and study their effects on the
estimation of tumor radius. The results show that the error
in the model takes over making further accuracy in meshing

TABLE III
MAP, SD AND BURN IN FOR THE CASE OF N=100, ract = 0.01m,

r0 = 0.005m WITH σins RANGING FROM 0.1 TO 1

Sl. no. σins MAP SD Burn in
1 0.10 0.0103 0.0011 14
2 0.15 0.0099 0.0009 15
3 0.20 0.0096 0.0012 18
4 0.25 0.0096 0.0017 34
5 0.30 0.0097 0.0014 32
6 0.40 0.0100 0.0012 09
7 0.50 0.0101 0.0013 21
8 0.60 0.0098 0.0015 20
9 0.70 0.0052 0.0027 65

10 0.80 0.0098 0.0018 26

Fig. 3. SD vs Initial r0 for the case of ract = 0.01m

unnecessary. González [6] writes that the current state-of-the-
art infrared temperature measurements have an accuracy of
0.05◦C, consequently able to detect tumour radii of around
0.5 cm to 3 cm, correct to the tenth of a centimeter. For
this level of accuracy seen as the standard, our current
meshing seems sufficient. In our simulation, since the Tmeas
and samples use the same model, it does not affect the
MCMC in any pronounced way by changing the meshing.

C. The concept of Prior information

We supplied our algorithm with prior information and
studied its effect in estimation of parameters. The inverse
of the standard deviation of the prior probability distribution
(σp) can be a measure of the information. Fig. 5 shows the
result metrics against σp. Clearly, a better informed prior
not only causes quick convergence but also higher levels of
accuracy as would be desireable today.

IV. MULTIPARAMETER ESTIMATION

In this section we discuss the estimation of tumor size
and location. The seed value is taken as r0 = 0.005 m and
x0 = y0 = z0 = 0.02 m. Table IV summarizes the performance
of the algorithm for various cases of actual tumor size and
location while Fig. 6 gives a sample randomwalk showing
that the algorithm converges to actual values.

V. VERIFICATION WITH ACTUAL CLINICAL DATA

In this section we discuss the estimation of tumor pa-
rameters with clinical data. A cancerous Breast Thermal

Fig. 4. MAP and Burn in vs Sigma Error for the case of ract = 0.01m
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Fig. 5. SD and Burn in vs σp of Prior distribution

Fig. 6. Multiparameter estimation: Randomwalk for the case [ract xact yact
zact ] = [0.015 0.05 0.02 0.036], MAP [r x y z] = [0.015 0.05 0.0192 0.0358]

image (or Thermogram) is shown in Fig. 7(a). The actual
and simulated temperature profiles for a reduced 5×5 mesh
are shown in 7(b) and 7(c) respectively. Our algorithm not
only converges to a constant radius value which is quite
close to the “thermal” radius of the tumor, it is also able to
simulate the effects of the tumor, within it’s own limitations.
It is remarkable that such a crude model can give conclusive
results with minimal computational cost.

VI. CONCLUSION & FUTURE WORK

In conclusion, we have established the capacity of this
method to give quick, dependable results against erroneous
data in tune with the accuracy standards today [6]. Pidaparti’s
ANN based method [10] gives about 10% error with noisy
data while our algorithm gives less than 2% error for up to
10% noise with slightly lesser number of iterations. Using a

TABLE IV
MULTIPARAMETER ESTIMATION: CASES WITH N=700

Case Tumor parameter: r (m) x (m) y (m) z (m)
1 Actual values 0.01 0.036 0.036 0.036

Estimated values 0.01 0.034 0.037 0.034
SD of output 0.00076 0.0049 0.0078 0.0045

2 Actual values 0.02 0.028 0.024 0.03
Estimated values 0.02 0.028 0.023 0.03
SD of output 0.0029 0.0020 0.0014 0.0034

3 Actual values 0.015 0.05 0.02 0.036
Estimated values 0.015 0.05 0.019 0.036
SD of output 0.0018 0.0091 0.0028 0.0059

(a) Cancerous Breast Thermogram

(b) Actual Mesh

(c) Simulated Mesh

Fig. 7. Clinical Validation

tenth of the number of iterations as Paruch [5], we get less
than 1% error while their time consuming Genetic Algorithm
based system gives around 5% error.

Our work would encourage further research into the multi-
tude of possibilities that arise by applying MCMC methods in
Bio-medical applications. Though our model is a simplistic
description of the human tissue with limited mesh size, it
gives sufficiently accurate results. Modelling the skin surface
shape to a sphere and the shape of the tumor, which is usually
an extremely irregular shape can also be considered. In the
era of growing Artificial Intelligence, one can expect a sensor
to be dynamically updating itself about the tumor via Breast
thermal imaging, being sent by wireless communication to a
computer, which would inturn pass on the instructions to a
cyberknife to dynamically kill the tumor cells without side
effects. This is another major step in that theme of research,
which we have fondly termed as ITBIC.
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