
  

 
  

Abstract — This study examines the effects of 
neurofeedback provided by support vector machine 
(SVM) classification-based real-time functional magnetic 
resonance imaging (rt-fMRI) during two types of motor 
tasks. This approach also enables the examination of the 
neural regions associated with predicting mental states in 
different domains of motor control, which is critical to 
further our understanding of normal and impaired 
function. Healthy volunteers (n=13) performed both a 
simple button tapping task, and a covert rate-of-speech 
counting task. The average prediction accuracy was 
approximately 95% for the button tapping task and 86% 
for the speech task. However, subsequent offline analysis 
revealed that classification of the initial runs was 
significantly lower - 75% (p<0.001) for button and 72% 
(p<0.005) for speech. To explore this effect, a group 
analysis was performed using the spatial maps derived 
from the SVM models, which showed significant 
differences between the two fMRI runs. One possible 
explanation for the difference in spatial patterns and the 
asymmetry in the prediction accuracies is that when 
subjects are actively engaged in the task (i.e. when they 
are trying to control a computer interface), they are 
generating stronger BOLD responses in terms of both 
intensity and spatial extent.  

I. INTRODUCTION 
   Functional magnetic resonance imaging (fMRI) is a 
noninvasive technique that measures correlates of neural 
activity and has been recently evaluated for suitability as a 
biofeedback signal [1]-[5]. 
   The most common approach to rt-fMRI studies to date has 
been to track fluctuations in localized regions of interest. 
Recently, however, we have developed a multivariate, 
supervised learning approach that can estimate brain states 
(the sensory/behavioral status of the volunteer) on an image-
by-image basis, obtained from the entire brain [6]. This 
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approach has several advantages over localized strategies, 
including the ability to utilize distributed network patterns 
that are specific to the behavioral task and individualized to 
the patient or volunteer. 
 Motor behavior represents one important target for 
neurofeedback for applications ranging from skill 
enhancement to rehabilitation therapy targeted to stroke, 
traumatic brain injury, neuromuscular diseases, and even 
speech disorders. An important consideration is that 
different aspects of motor behavior can involve different 
networks of the brain. It is therefore critical to study the 
neural substrates associated with specific motor tasks and to 
further our understanding of normal and impaired cortical 
and subcortical motor processes.  
 In terms of speech therapy, modulating rate of speech is a 
treatment often used to improve intelligibility. Thus, 
neurofeedback to enhance control of rate of speech could 
serve as a potential application in the treatment of dysarthria, 
which is a neuromuscular speech disorder characterized by 
poor articulation, and improper speech tempo [7]. To assess 
the potential for using supervised learning-based rt-fMRI for 
speech disorders, it is important to characterize the neural 
correlates of speech tasks and to determine strategies for 
building accurate predictive models of these tasks.  

In the work reported here we examine two different motor 
tasks, executed with and without neurofeedback: (a) a simple 
motor task that involves self-paced frequency of right and 
left index finger tapping on a button box; and (b) a speech 
production paradigm, which poses considerable demands on 
motor control networks and assesses rate and effort of 
automatic, covert speech. Compared with other domains of 
motor control, such as locomotion or upper limb 
movements, few data are available on the cerebral 
organization of motor aspects of speech production that are 
essential for the fast and accurate execution of orofacial 
movements synchronized with laryngeal and respiratory 
functions during speech production [8]. 
 The purpose of this study is to examine classification 
accuracy and the brain regions that contribute to this 
accuracy both with and without applying neurofeedback 
machine learning for the button press task and the speech 
rate control task.  

II. MATERIALS AND METHODS 

A. Subjects 
Thirteen healthy, right-handed volunteers (4 males, 9 

females, mean age = 30.15) were recruited to participate in 
the following paradigm: (1) right and left index finger 
tapping on a button box; and (2) fast and slow rates of 
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automatic, covert, sequential counting. Subjects participated 
in the study after giving their informed consent (Institutional 
Research Board, Baylor College of Medicine). All subjects 
were right-handed.  

B. fMRI Scanning 
 Structural and functional brain imaging was performed on 
a 3.0 T Siemens Allegra (Siemens, Erlangen, Germany). T1-
weighted anatomical images were acquired with a 
transversal orientation with 1 × 1 × 1 mm3 voxel volume 
(MPRAGE: 192 axial slices; TR 1200ms; TE 2.93ms; FOV 
245mm; Flip Angle 12°). For fMRI, 30 axial slices were 
acquired for each 8.5 min run with a gradient echo sequence 
(TR 2000 ms; TE 31 ms; resolution, 3.458 × 3.458 × 5.0 
mm3; FOV 220 mm; flip angle 90°).  

C. Presentation of Tasks 
 Both tasks were based on the presentation of visual 
stimuli to which subjects gave a response covertly (speech 
task) or by pressing a button on a button box (button task) 
(Current Designs™, www.curdes.com). Stimuli were 
generated on a PC and, using a long focal length projector, 
back projected to a screen which could be seen via a mirror 
mounted on the MRI head coil. Visual stimuli were 
developed with a Python-based software package, Vision 
Egg (http://www.visionegg.org). For rt-fMRI experiments 
utilizing feedback, a serial (IEEE RS232) port on the 
scanner’s image reconstruction computer was used to output 
results to the presentation computer and acted as a control 
signal to the stimulus program. 
 The experimental session consisted of two runs of a 
continuous button press task (left vs. right finger), and two 
runs of a covert speech task (fast vs. slow covert counting). 
During the scanning session, the first run for each task was 
used to train a supervised learning model and the second run 
used this model to classify each brain volume and convert 
the result into a control signal to provide visual feedback. 
Specifically, a linear SVM classification model of right vs. 
left index finger tapping was generated during the first run, 
after which the subject repeated the task while real-time 
feedback was provided every two seconds. Next, the same 
procedure was used for fast vs. slow covert counting. For the 
feedback runs, the visual display consisted of a slider bar 
that was horizontal for the button press task and vertical for 
the covert counting task. The slider bar showed the current 
classifier output of left vs. right, or fast vs. slow with a 
magnitude that was proportional to the distance from the 
decision boundary. The visual display also included a 
centrally presented score that served as an indicator of 
cumulative success during the run. Subjects were asked to 
visually fixate on the centrally presented score and use their 
peripheral vision to follow the length and direction of the 
slider bar. For the first runs of each task (which were used to 
train the SVM models), the stimulus was similar (to control 
for low-level visual effects) except that the bar was always 
at its maximum value for the left or right and for the fast or 
slow conditions, and the score accumulated at the maximum 
rate.  

D. Support vector machine classification of fMRI data 
 Support vector machine (SVM) classification was used for 
real-time feedback [6] and for further offline analysis [9]. 
Classification algorithms attempt to find a decision rule that 
uses an input vector, , to obtain a scalar-valued output 
class label, , with . The process of estimating 
the decision rule is called supervised learning, and uses a 
training data set  with a finite number of 
examples, R. Once the decision rule is determined, test data, 
consisting of input vectors can be classified by their output 
values. 

The support vector machine (SVM) is one method for 
classification used in recent fMRI studies [6][9]-[12]. For 
two classes, the SVM algorithm attempts to find a linear 
decision boundary (separating hyperplane) using the 
decision function , where  defines 
the linear decision boundary, and is chosen to maximize the 
boundaries defined by D = +1 and D = -1 (known as the 
margin) between the two class distributions. In the soft 
margin formulation (where training data observations are 
allowed to fall on the wrong or even the opposite boundary), 

 is found by minimizing the sum , 

where the s, are used to penalize the training errors on the 
wrong side of the margin, and are termed “slack variables.” 
The free parameter, C, controls the degree to which the 
training errors, averaged over all R observations penalize the 
minimization.  
Once the SVM model is determined from the training image 
data, independent test data can be classified using, 

 

For fMRI, brain state classification uses the experimental 
design as the class label (fast and slow are assigned unique 
classes for the speech task data, and left and right are unique 
classes in the button press data) and an experiment consists 
of a series of brain images being collected while class labels 
are changed. The classifier’s input vector consists of an 
appropriate representation of the spatiotemporal image data. 
In this situation, we have labeled data.  

For block design data, it is possible to represent each 
image as an input vector , as described in [6], where the 
vector components are the intensity values for each brain 
voxel at the acquisition time. The experimental condition 
(behavioral state) associated with each  defines the class 
label, . Note that the training data and testing data are 
assumed to be spatially and temporally aligned and have the 
same dimensionality.  

E. Classification accuracy and brain mapping 
The rt-fMRI experiments were performed without 

preprocessing. After the experiment, however the data were 
preprocessed (alignment, spatial smoothing (4 mm), and 
transformation to percent change) and re-analyzed. In the 
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laboratory, the designation of which run is used for training 
and which is classified can be exchanged (see Fig. 1 A), and 
we explored both combinations. Recalling that subjects 
performed the second run for each task with neurofeedback, 
classification of “feedback” runs was possible using the 
model generated by the first run. In the same manner, 
classification of “no-feedback” runs used the second run as 
the training run to classify the first. Percent classification 
accuracy was calculated [(number of correctly classified 
images)/(total number of images) × 100] with AFNI [13] 
using 3dsvm [9]. In addition, spatial maps derived from the 
SVM linear weight vector [9] were generated. Note that in 
this paper “feedback” and “no feedback” refer to what was 
classified (not the training data), thus a “feedback map” 
actually was generated from the first run of the task. Maps 
generated were second level group analyses (t-tests of the 
individual weight vector maps). 

III. RESULTS 
The average classification accuracy across subjects of fast 

versus slow covert counting was higher for the feedback run 
(86.25%) than for the no-feedback run (71.79%) (p<0.005) 
(Fig. 1 B). This was also true for the index finger tapping 
task; the average classification accuracy across subjects was 
higher for the feedback run (95.41%) than for the no-
feedback run (75.20%) (p < 0.001) (Fig. 1 C). Regions from 
the SVM maps (Fig. 2) are listed on Table I. 

 

IV. DISCUSSION 
Interestingly, these tasks measure different aspects of 

motor function, but also feedback (training with run 1) /no-
feedback (training with run 2) activation seems to be 
dependent on the type and level of task difficulty. In other 
words, a task that yields a more robust spatial pattern across 
subjects, such as the button task seems to require an 
automatic, bottom-up control of execution (visual areas). 
The speech task however, reflected greater spatial pattern 
variability across subjects, which could suggest that a more 
complex task may require executive processing, such as the 
prefrontal cortex to a greater magnitude than a task of lesser 
complexity [16]. The group button task maps revealed right 
tapping areas of the right cerebellar lingual, left postcentral 
and inferior parietal gyri. Similarly, left finger tapping 
showed spatial patterns of left culmen, right 
thalamus/lentiform, right postcentral, and medial frontal gyri 
activation. Both left and right finger tapping generated 
lateralized primary somatosensory (S1) patterns, and 
ipsilateral cerebellar regions. However, it seems that right 
finger tapping yielded a more efficient recruitment of 
cortical processing compared to the spatial patterns for left 
finger tapping. It is possible that this is due to the fact that 
the subjects were right-handed, which may result in a more 
robust activation for right-handed tasks.  

For the fast versus slow counting task, slow counting 
seems to suggest an interaction between bottom-up (middle 
occipital) and top-down (frontal and parietal) sensory 
mechanisms. This implies that although sequential counting 
is an automatic task, the performance of this task that helps 
distinguish, slow from fast requires fronto-parietal 
activation, responsible for generating top-down attentional 
control [17]. Fast counting produced a left cerebellar, right 
superior temporal gyrus, and bilateral lentiform and 
postcentral gyrus spatial pattern, which may suggest an 
automatic/bottom-up sensory control to perform the task. 

The present study evaluated the effects of feedback on 
two domains of motor performance, a simple motor finger 
tapping task and a covert, automatic speech task in healthy 
controls. In both of these tasks we get significant differences 
in the spatial patterns generated (which topographically 
represent the supervised learning model) and in prediction 
accuracies. These results seem to be dependent on whether 
the subjects were simply executing the task or additionally 
trying to control a slider bar interface. While it is difficult to 
obtain independent behavioral measures in the inner speech 
task, it is possible to quantify the button presses in terms of 
rate and consistency. We have noted in some subjects an 
increase in button press rate and consistency when subjects 
were receiving feedback (run 2). One possible explanation, 
then, for the difference in spatial patterns and the asymmetry 
in the prediction accuracies is that when subjects are actively 
engaged in the task (i.e. when they are trying to control a 
computer interface), they are generating stronger BOLD 
responses in terms of both intensity and spatial extent. Thus 
if the model weight vector of one run represents a “super-
set” of important spatial locations compared to the other run, 
we would expect adequate pattern matching and thus good 
prediction accuracy. On the other hand, if one run’s model is 
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a “sub-set” of the other run’s data, then we would expect 
noisier classification results. 
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Fig. 1. (A) approach for estimating “feedback” and “no feedback” 
prediction accuracies. (B) Accuracies for covert speech. (C) Accuracies for 
button tapping. 
 
 

 
Fig. 2. Group results for SVM models.  (A) Feedback vs. no-feedback 
(training with the first run vs. training with the second run) for the finger 
tapping task. (B) Right vs. left for the finger tapping task. (C) Feedback vs. 
no-feedback (training with first run vs. training with the second run) for the 
covert speech task. (D) Fast vs. slow for the covert speech task. 
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